請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75255完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Chia-Feng Liu | en |
| dc.contributor.author | 劉家鳳 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:12:24Z | - |
| dc.date.available | 2021-07-01T08:12:24Z | - |
| dc.date.issued | 2001 | |
| dc.identifier.citation | Asakura, A., Lyons, G.E. and Tapscott, S.J. (1995). The regulation of MyoD gene expression: Conserved elements mediate expression in embryonic axial muscle. Dev. Biol. 171: 386-398. Bober, E., Lyons, G.E., Braun, T., Cossu, G., Buckingham, M. and Arnold, H.H. (1991). The muscle regulatory gene Myf-6 has a biphasic pattern of expression during early mouse development. J. Cell Biol. 113: 1255-1265. Braun, T. and Arnold, HR. (1991). The four human muscle regulatory helix-loop-helix proteins Myf3-Myf6 exhibit similar hetero-dimerization and DNA binding properties. Nucleic Acids Res. 19: 5645-5651. Braun, T., Buschhausen-Denker, G., Bober, E., Tannich, E. and Arnold, H.H. (1989). A novel human muscle factor related to but distinct from MyoDI induces myogenic conversion in 10TI/2 fibroblasts. EMBO J. 8: 701-709. Brem, G., Brenig, B., Horstgen-schwark, G., and Winnacker, E. L. (1988). Gene transfer in tilapia (Oreochromis niloticus). Aquaculture 68,209-219. Buchberger, A., Ragge, K. and Arnold, H.H. (1994). The myogenin gene is activated during myocyte differentiation by pre-existing, not newly synthesized transcription factor MEF-2. J. Biol. Chem. 269: 17289-17296. Buckingham, M. (1992). Making muscle in mammals. Trends Genet. 8,144-149. Chakraborty T, Martin JF, Olson EN. (1992). Analysis of the oligomerization of myogenin and E2A products in vivo using a two-hybrid assay system. ,J.Biol. CChem. Sep 5;267(25):17498-501 Chen, Y.H., Lee, W.C., Cheng, C.H. and Tsai, H.J. (2000). Molecular structure of zebrafish (Danio rerio) myogenin cDNA. Comp. Biochem. Physiol. (B) 127: 97-103. Chen, Y.H, Lee, W.C., Liu, C.F. and Tsai, H.J. (2001). Molecular structure, dynamic exprssion, and promotr analysis of zebrafish (Danio rerio) myf-5 gene. Genesis 29: 22-3 5. Cheng, T.C., Wallace, M.C., Merlie, J.P. and Olson, E.N. (1993). Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 261: 215-218. Chevallier, A., Kieny, M. and Mauger, A. (1978). Limb-somite relationship: Effect of removal of somatic mesoderm on the wing musculature. J. Embryol. Expt. Morphol. 43: 263-278. Chou, C.Y., Horng, L.S., and Tsai, H.J., (2001) Uniform GFP Expression in Transgenic Medaka (Oryzians latipes) at the F0 Generation Transgenic Research in press. Christ, B., Jacob, H.J. and Jacob, M.(1977). Experimental analysis of the origin of the wing musculature in avian embryos. Anal. Embryol. (Berlin.) 150: 171-186. Davis, R.L., Weintraub, H. and Lassar A.B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987-1000. Edmondson, D.G. and Olson, E.N. (1989). A gene with homology to the myc similarity region of MyoDl is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3,628-640. Edmondson, D.G., Cheng, T.C., Cserjesi, P., Chakraborty, T. and Olson, E.N. (1992). Analysis of the myogenin promoter reveals and indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol. Cell. Biol. 12:3665-3677. Fu, Y., Wang, Y., and Evans, S. M. (1998). Viral sequences enable efficient and tissue-specific expression of transgenes in Xenopus. Nat Biotechnol. 16, 253-257. Hasty P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J., Olson, E.N. and Klein, W.H. (1993). Muscle deficiency and neonatal death in mice with targeted mutation in the myogenin gene. Nature364: 501-506. Hacker, A. and Guthrie, S. (1998). A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125, 3461-3472. Hadchouel J, Tajbakhsh S, Primig M, Chang T H-T, Dubas P. Rocancourt D and Buckingharn M. (2000). Modular long-range regulation of Myf-5 reveals unexpected heterogeneity between skeletal muscles in the mouse embryo. Development 127: 4455-4467. Hirsinger, E., Malapert, P., Dubrulle, J., Delfini, M. C., Duprez, D., Henrique, D., Ish-Horowicz, D. and Pourquie,O. (2001). Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 128, 107-116. Ju B, Xu Y, He J, Liao J, Yan T, Hew CL, Lam TJ, Gong Z. (1999). Faithful expression of green fluorescent protein (GFP) in transgenic ze-brafish embryos under control of zebrafish gene promoters. Dev. Genet 25:158—167. Kobiyama A, Nihei Y, Hirayama Y, Kikuchi K, Suetake H, Johnston IA and Watabe S. (1998). Molecular cloning and developmental expression patterns of the MyoD and MEF2 families of muscle transcription factors in the carp. J. Exp. Biol. 201: 2801-2813. Miner, J.H. and Wold, B. (1990). Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. USA 87,1089-1093. Ordahl, C. P. and Le-Douarin, N. M. (1992). Two myogenic lineages within the developing somite. Development 114, 339-353. Ott, M.O., Bober, E., Lyons, G., Arnold, H.H. and Buckingham, M. (1991). Early expression of the myogenic regulatory gene, Myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111: 1097-1107. Rhodes, S.J. and Konieczny, S.F. (1989). Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3,2050-2061. Sassoon, D., Lyons, G., Wright, Vv.E., Lin, V., Lassar, A., Weintraub, H. and Buckingham, M. (1989). Expression of two myogenic regulatory factors myogenin and MyoDI during mouse embryogenesis. Nature 341: 303-307. Park H. C., Kim C.H., Bae Y.K., Yeo S.Y., Kim S.H., Hong S.K., Shin J., Yoo K.W., Hibi M. Hirano T., Milki N., Chitnis A.B. and Huh T.L.(2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons.Dev. Biol. 227; 279-293 Sartorelli, V., Webster, K.A. and Kedes, L. (1990). Muscle-specific expression of the cardiac aipha-actin gene requires MyoDl, CArG-box binding factor, and Sp1. Genes Dev. 4: 1811-1822. Summerbell D, Ashby PR, Coutelle O, Cox D, Yee S-P. Rigby PWJ. (2000). The expression of myf-5 in the developing mouse embryo is controlled by discrete and dispersed enhancers specific for particular populations of skeletal muscle precursors. Development127:3745—3757. Tapscott, S.J., Lassar, A.B. and Weintraub, H. (1992). A novel myoblast enhancer element mediates MyoD transcription. Mol. Cell. Biol. 12: 4994-5003. Xu, Y., HE, J., Tian, H.L., Chan, CR., Liao, J., Yan, T., Lam, T.J. and Gong, Z. (1999). Fast skeletal muscle specific expression of a zebrafish myosin light chain 2 gene and characterization of its promoter by direct injection into skeletal muscle. DNA Cell Biol.18: 85-95. Yoshizaki G, Takeuchi Y, Sakatani S, Takeuchi T. (2000). Germ cell-specific rainbow trout under control of the rainbow trout vasa-like gene promoter. Int .J. Dev Biol 44:323—326. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75255 | - |
| dc.description.abstract | Myf -5 是肌肉特異性轉錄因數之一,參與調控肌原纖維及肌肉細胞的增生和分化。目前對於myf-5 基因上游區域的調控並不十分清楚,故本實驗利用基因轉殖的技術以斑馬魚(Danio rerio)作為實驗材料,詳細研究myf-5 基因上游調控區的cis-acting element 。將不同長度之上游調控區 DNA 片段與綠螢光蛋白 cDNA (報導基因)相連,以顯微注射之方式在相同莫耳濃度的條件下,將其注射至單細胞時期的斑馬魚胚胎中,觀察到從-1nt 至-2937 nt (- 2937/- l )、-702/-l 、-506/- l 、- 290/- l 、-154/- l 、-82/- l 之myf-5 基因上游序列在轉殖胚胎的綠螢光表現率分別為 83.5%,62.4%,28.2 % , 30.0 % , 8.6 %and 13.9 % ;若注射- 62/-1 片段,在 110 個( n = 110 )活下來的轉殖胚胎中並沒有觀察到任何正反應的訊號。同樣地,注射不含- 82/- 62 區域之上游 0.3kb 的promoter 片段,也沒有觀察到正反應的訊號( n = 104 )。但將-82/-62 接入CMV的minimal TATA box 之前進行顯微注射後,觀察到60%的螢光表現,且可以看到綠螢光表現在somite ,與CMV當promoter的EGFP表現很不相同,這些證據顯示 myf- 5 調控區中- 82/-62 是一個相當重要的cis-acting element ,具有影響斑馬魚組織特異性及發育時期特異性表現的能力。進一步地,利用 PCR 的方法設計在-82/-62 區域核甘酸的突變,發現位於 -69/-62 含有 TCCTGGCCA 序列對於myf-5 基因的調控有決定性的影響。另外,本實驗也在500 對轉殖魚中,得到了帶有myf-5 promoter 連接綠螢光蛋白的轉殖魚 Fl 子代,其綠螢光表現於腦、somite 、圍心腔外等處,並觀察到綠螢光表現自受精後18小時後會有逐漸減弱的現象。 | zh_TW |
| dc.description.abstract | The myf-5 is the one of muscle regulatory genes involved in the proliferation of myoblasts and differentiation of myogenic cells. Because of no suitable cell-lines available for analyzing the gene regulation of zebrafish myf-5, we used transgenic zebrafish to more fully dissect the cis-regulatory elements of upstream region in vivo. Various deletion sizes of the upstream sequence of zebrafish myf-5 fused with the GFP cDNA were constructed and microinjected with 12 a-mole into the animal pole of one-celled zebrafish embryos. Results showed that the specific-GFP expression rates of embryos injected with fragments of upstream sequence from nucleotide-1 to-2.9 kb (-1/-2.9 kb), -1/-702bp, -1/-506bp, -1/-290 bp, -1/-154bp and —1/-82bp were 83.5, 62.4, 28.2, 30.0, 8.6 and 13.9 %, respectively. However, no positive signals were shown in the survival transgenic embryos injected either with fragment of-1/-62 (n=110) or with fragment of -1/-290 bp but without containing-62/-82 sequence (n=104).To define the-82/-62 motif is required for tissue specific expression, we generated transgenic fish carrying sequence upstream of myf-5 gene-82/-62 motif fusion to minimal TATA of CMV promoter-EGFP cDNA. The EGFP signals and translocation of that could be observed at somite and its expression rate (61.54%) was higher then the control group (13%).Further more, Using sequential mutagenesis PCR to generate mutated between-82/-62 motif. The results show that-69/-62 (TCCTGGCCA) motif were an important region to effect myf-5 gene expression These evidences strongly suggest that (1)The -82/-62 may be an enhancer for controlling myf-5 gene expression (2) a-62/-82 motif is the most critical sequence for controlling the specific expression of zebrafish myf-5. In addition, after mating about 500 transgenic fish the Fl transgenic fish of myf-5 gene promoter (6.3kb) fusion with EGFP cDNA were also generated. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:24Z (GMT). No. of bitstreams: 0 Previous issue date: 2001 | en |
| dc.description.tableofcontents | 中文摘要……………………………l Abstract……………………………2 緒論…………………………………3 材料與方法…………………………7 實驗結果……………………………24 討論…………………………………31 參考文獻……………………………36 圖表…………………………………41 Appendix……………………………64 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用基因轉殖的技術解析斑馬魚肌肉特異性調控因數 Myf - 5 之起動子 | zh_TW |
| dc.title | Identification of Somite-Specific cis-Acting Elements of Zebrafish (Danio rerio) myf-5 Gene by Using Transgenic Fish | en |
| dc.date.schoolyear | 89-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 75 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
