請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75252完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Yi-Hsuan Chen | en |
| dc.contributor.author | 陳以萱 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:12:23Z | - |
| dc.date.available | 2021-07-01T08:12:23Z | - |
| dc.date.issued | 2001 | |
| dc.identifier.citation | Alemany, J., Zelenka, P., Serrano, J. and de Pablo, F. (1989). Insulin-like growth factor I and insulin regulate delta-crystallin gene expression in developing lens. J. Biol. Chem. 264, 17559-17563. Bassas, L., Zelenka, P. S., Serrano, J. and de Pablo, F. (1987). Insulin and IGF receptors are developmentally regulated in the chick embryo eye lens. Exp. Cell Res. 168, 561-566. Beebe, D. C., Feagans, D. E. and Jebens, H. A. (1980). Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 77, 490-493. Beebe, D. C., Silver, M. H., Belcher, K. S., Van Wyk, J. I., Svoboda, M. E. and Zelenka, P. S. (1987). Lentropin, a protein that controls lens fiber formation, is related functionally and immunologically to the insulin-like growth factors. Proc. Natl. Acad. Sci. U. S. A. 84, 2327-2330. Beebe, D. C. (1988). Discussion summary: Growth factors in the eye. Molecular Biology of the Eye: Genes, Vision and Ocular Disease, 457-460. Behrens, M., Wilkens, H. and Schmale, H. (1998). Cloning of the alphaA-crystallin genes of a blind cave form and the epigean form of Astyanax fasciatus: a comparative analysis of structure, expression and evolutionary conservation. Gene 216, 319-326. Bijlsma, E. K., Delattre, O., Juyn, E. K., Melot T., Westerveld, A. Dumanski, J. P., Thomas, G. and Hulsebos, T. J. (1993). Regional fine mapping of the beta crystallin genes on chromosome 22 excludes these genes as physically linked markers for neurofibromatosis type 2. Genes Chromos. Canc. 8, 112-118. Bloemendal, H. and de Jong, W. (1991). Lens protein and their genes. Prog. Nucleic Acid Res. Mol. Biol. 41, 259-81. Bloemendal, H. (1977). The vertebrate eye lens. Science. 197, 127-38. Brahma, S. K. (1988). Ontogeny of beta B1-crystallin polypeptide during chicken lens development. Exp. Eye Res. 47, 507-510. Bron, A. J., Vrensen, G. F., Koretz, J., Maraini, G. and Harding, J. J. (2000). The ageing lens. Ophthalmologica 214, 86-104. Campbell (ed.). (1993). Biology. The Benjamin/Cummings Publishing Company. Chambers, C. and Russell, P. (1991). Deletion mutation in an eye lens beta-crystallin. An animal model for inherited cataracts. J. Biol. Chem. 266, 6742-6746. Chen, J. Y., Chang, C. Y., Chen, J. C., Shen, S. C. and Wu, J. L. (1997). Production of biologically active recombinant tilapia insulin-like growth factor-IT polypeptides in Escherichia coli cells and characterization of the genomic structure of the coding region. DNA Cell Biol. 16, 883-92. Chen, J. Y., Tsai, H. L., Chang, C. Y., Wang, J. I., Shen, S. C. and Wu, J. L. (1998). Isolation and characterization of tilapia (Oreochromis mossambicus) insulin-like growth factors gene and proximal promoter region. DNA Cell Biol. 17, 359-76. Chen, J. Y., Chang, B. E., Chen, Y. H., Lin, Cliff J. F., Wu, J. L. and Kuo, C. M. (2001). Molecular cloning, developmental expression, and hormonal regulation of zebrafish (Danio rerio) beta-crystallin B1, a member of the superfamily of beta crystalline family. Biochem. Biophys. Res. Commun. (in press). Chiou, S. H., Lo, C. H., Chang, C. Y., Itoh, T., Kaji, H. and Samejima, T. (1991). Ostrich crystallins. Structural characterization of delta-crystallin with enzymic activity. Biochem. J. 273, 295-300. Civil, A., van Genesen, S. T., Klok, E. J. and Lubsen, N. H. (2000). Insulin and IGF-I affect the protein composition of the lens fibre cell with possible consequences for cataract. Exp. Eye Res. 70, 785-794. Coop, A., Goode, D., Sumner, I. and Crabbe, M. J. (1998). Effects of controlled mutations on the N- and C-terminal extensions of chick lens beta B1 crystallin. Graefes Arch. Clin. Exp. Ophthalmol. 236, 146-150. Das, G. C. and Piatigorsky, J. (1986). The chicken delta 1-crystallin gene promoter: binding of transcription factor(s) to the upstream G+C-rich region is necessary for promoter function in vitro. Proc. Natl. Acad. Sci. U. S. A. 83, 3131-3135. David, L. L., Shearer, T. R. and Shih, M. (1993). Sequence analysis of lens beta-crystallins suggests involvement of calpain in cataract formation. J. Biol. Chem. 268, 1937-1940. de Jong. W., Hendriks, W., Mulders, J. W. and Bloemendal, H. (1989). Evolution of eye lens crystallins: the stress connection. Trends Biochem. Sci. 14, 365-368. de Pable, F., Perez, V. , Serna, J., Gonzalez, G., Lopez, C., de La, R., Alemany, J. and Caldes, T. (1993). IGF-I and the IGF-I receptor in development of nonmammalian vertebrates. Mol. Reprod. Dev. 35, 427-432. den Dunnen, J. T., Moormann, R. J., Lubsen, N. H. and Schoenmakers, J. G. (1986). Concerted and divergent evolution within the rat gamma-crystallin gene family. J. Mol. Biol. 189, 37-46. den Dunnen, J. T., Moormann, R. J., Lubsen, N. H. and Schoenmakers, J. G. (1986). Intron insertions and deletions in the beta/gamma-crystallin gene family: the rat beta B1 gene. Proc. Natl. Acad. Sci. U. S. A. 83, 2855-2859. Dirks, R. P., Kraft, H. J., van Genesen, S. T., Klok, E. I., Pfundt, R., Schoenmakers, J. G. and Lubsen, N. H. (1996). The cooperation between two silencers creates an enhancer element that controls both the lens-preferred and the differentiation stage-specific expression of the rat beta B2-crystallin gene. Eur. J. Biochem. 239,23-32. Dirks, R. P., Klok, E. J., van Genesen, S. T., Schoenmakers, J. G. and Lubsen, N. H. (1996). The sequence of regulatory events controlling the expression of the gamma D-crystallin gene during fibroblast growth factor-mediated rat lens fiber cell differentiation. Dev. Biol. 173, 14-25. Duncan, M. K., Haynes, J. I. and Piatigorsky, J. (1995). The chicken beta A4- and beta B1-crystallin-encoding genes are tightly linked. Gene 162, 189-196. Duncan, M. K., Roth, H. I., Thompson, M., Kantorow, M. and Piatigorsky, J. (1995). Chicken beta B1 crystallin: gene sequence and evidence for functional conservation of promoter activity between chicken and mouse. Biochim. Biophys. Acta 1261, 68-76. Duncan, M. K., Li, X., Ogino, H., Yasuda, K. and Piatigorsky, J. (1996). Developmental regulation of the chicken beta B1-crystallin promoter in transgenic mice. Mech. Dev. 57, 79-89. Duncan, M. K., Haynes, J. I., Cvekl, A. and Piatigorsky, J. (1998). Dual roles for Pax-6: a transcriptional repressor of lens fiber cell-specific beta-crystallin genes. Mol. Cell Biol. 18, 5579-5586. Duncan, M. K., Cvekl, A., Li, X. and Piatigorsky, J. (2000). Truncated forms of Pax-6 disrupt lens morphology in transgenic mice. Invest. Ophthalmol. Vis. Sci. 41, 464-473. Easter, S. S. and Nicola, G. N. (1996). The development of vision in the zebrafish (Danio rerio). Dev. Biol. 180, 646-663. Fujii, Y., Watanabe, K., Hayashi, H., Urade, Y., Kuramitsu, S., Kagamiyama, H. and Hayaishi, O. (1990). Purification and characterization of rho-crystallin from Japanese common bullfrog lens. J. Biol. Chem. 265, 9914-9923. Funahashi, J., Sekido, R., Murai, K., Kamachi, Y. and Kondoh, H. (1993). Delta-crystallin enhancer binding protein delta EF1 is a zinc finger-homeodomain protein implicated in postgastrulation embryogenesis. Development 119, 433-446. Gilbert, S. F. (ed.). (2000). Developmental Biology. Sinauer Associates. Goring, D. R., Breitman, M. L. and Tsui, L. C. (1992) Temporal regulation of six crystallin transcripts during mouse lens development. Exp. Eye. Res. 54, 785-795. Goto, K., Okada, T. S. and Kondoh, H. (1990). Functional cooperation of lens-specific and nonspecific elements in the delta 1-crystallin enhancer. Mol. Cell Biol. 10, 958-964. Graw, J. (1996). Cataract mutations as a tool for developmental geneticists. Ophthalmic Res. 28 Suppl 1, 8-18. Graw, J. (1997). The crystallins: genes, proteins and diseases. Biol. Chem. 378, 1331-1348. Graw, J. (1999). Cataract mutations and lens development. Prog. Retin. Eye Res. 18,235-267. He, W. and Li, S. (2000). Congenital cataracts: gene mapping. Hum. Genet. 106, 1-13. Head, M. W. and Goldman, J. E. (2000). Small heat shock proteins, the cytoskeleton, and inclusion body formation. Neuropathol. Appl. Neurobiol. 26, 304-312. Hejtmancik, J. F., Thompson, M. A., Wistow, G. and Piatigorsky, J. (1986). cDNA and deduced protein sequence for the beta B1-crystallin polypeptide of the chicken lens. Conservation of the PAPA sequence. J. Biol. Chem. 261, 982-987. Hendriks, W., Leunissen, J., Nevo, E., Bloemendal, H. and de Jong. W. (1987). The lens protein alpha A-crystallin of the blind mole rat, Spalax ehrenbergi: evolutionary change and functional constraints. Proc. Natl. Acad. Sci. U. S. A. 84, 5320-5324. Hendriks, W., Mulders, J. W., Bibby, M. A., Slingsby, C., Bloemendal, H. and de Jong. W. (1988). Duck lens epsilon-crystallin and lactate dehydrogenase B4 are identical: a single-copy gene product with two distinct functions. Proc. Natl. Acad. Sci. U. S. A85,7114-7118. Hulsebos, T. J., Gilbert, D. J., Delattre, O., Smink, L. J., Dunham, I., Westerveld, A., Thomas, G., Jenkins, N. A. and Copeland, N. G. (1995). Assignment of the beta B1 crystallin gene (CRYBB1) to human chromosome 22 and mouse chromosome 5. Genomics 29, 712-718. Hulsebos, T. J. (1995). An informative HindIII polymorphism associated with the beta B1 crystallin gene (CRYBB1) on human chromosome 22. Clin. Genet. 47,105-106. Hyatt, G. A. and Beebe, D. C. (1993). Regulation of lens cell growth and polarity by an embryo-specific growth factor and by inhibitors of lens cell proliferation and differetiation. Development 117, 701-709. Ilagan, J. G., Cvekl, A., Kantorow, M., Piatigorsky, J. and Sax, C. M. (1999). Regulation of alphaA-crystallin gene expression. Lens specificity achieved through the differential placement of similar transcriptional control elements in mouse and chicken. J. Biol. Chem. 274, 19973-19978. Ishibashi, K., Fujii, S., Escano, M. F., Sekiya, Y. and Yamamoto, M. (2000). Up-regulation of crystallin mRNAs in form-deprived chick eyes. Exp. Eye Res. 70,153-158. Jaworski, C. J. and Piatigorsky, J. (1989). A pseudo-exon in the functional human alpha A-crystallin gene. Nature 337, 752-754. Klemenz, R., Frohli, E., Steiger, R. H., Schafer, R. and Aoyama, A. (1991). Alpha B-crystallin is a small heat shock protein. Proc. Natl. Acad. Sci. U. S. A. 88, 3652-3656. Klok, E. J., van Genesen, S. T., Civil, A., Schoenmakers, J. G. and Lubsen, N. H. (1998). Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters. J. Biol. Chem. 273, 17206-17215. Lang, R. A. (1999). Which factors stimulate lens fiber cell differentiation in vivo Invest. Ophthalmol. Vis. Sci. 40, 3075-3078. Lu, S. F., Pan, F. M. and Chiou, S. H. (1996). Sequence analysis of four acidic beta-crystallin subunits of amphibian lenses: phylogenetic comparison between beta- and gamma-crystallins. Biochem. Biophys. Res. Commun. 221, 219-228. Mandal, K., Bose, S. K., Chakrabarti, B. and Siezen, R. J. (1987). Structure and stability of gamma-crystallins. II. Differences in microenvironments and spatial arrangements of cysteine residues. Biochim. Biophys. Acta 911, 277-284. McAvoy, J. W. (1978). Cell division, cell elongation and the co-ordination of crystallin gene expression during lens morphogenesis in the rat. J. Embryol. Exp. Morphol. 45, 271-81. Mizuno, N., Mochii, M., Takahashi, T. C., Eguchi, G. and Okada, T. S. (1999). Lens regeneration in Xenopus is not a mere repeat of lens development, with respect to crystallin gene expression. Differentiation 64, 143-149. Moormann, R. J., den Dunnen, J. T., Mulleners, L., Andreoli, P., Bloemendal, H. and Schoenmakers, J.G. (1983). Strict co-linearity of genetic and protein folding domains in an intragenically duplicated rat lens gamma-crystallin gene. J. Mol. Biol.171, 353-368. Mulders, J. W., Hendriks, W., Blankesteijn, W. M., Bloemendal, H. and de Jong. W. (1988). Lambda-crystallin, a major rabbit lens protein, is related to hydroxyacyl-coenzyme A dehydrogenases. J. Biol. Chem. 263, 15462-15466. Ogino, H. and Yasuda, K. (2000). Sequential activation of transcription factors in lens induction. Dev. Growth Differ. 42, 437-448. Piatigorsky, J. (1981). Lens differentiation in vertebrates: a review of cellular and molecular features. Differentiation. 19, 134-153 Piatigorsky, J. (1989). Lens crystallins and their genes: diversity and tissue-specific expression. FASEB J. 3, 1933-1940. Posner, M., Kantorow, M. and Horwitz, J. (1999). Cloning, sequencing and differential expression of aiphaB-crystallin in the zebrafish, Danio rerio. Biochim. Biophys. Acta 1447, 271-277. Richardson, N. A., Chamberlain, C. G. and McAvoy, J. W. (1993). IGF-I enhancement of FGF-induced lens fiber differentiation in rats of different ages. Invest. Ophathalmol. Vis. Sci. 37, 2276-2284. Roth, H. J., Das, G. C. and Piatigorsky J. (1991). Chicken beta Bi-crystallin gene expression: presence of conserved functional polyomavirus enhancer-like and octamer binding-like promoter elements found in non-lens genes. Mol. Cell Biol.1991. 11, 1488-1499 Shirke, S., Sonya C. F., Hallem E. and Makarenkova H. P. (2001). Misexpress of IGF-I in the mouse lens expands the transitional zone and perturbs lens polarization. Mech. Dev. 101, 167-174. Slingsby, C., Driessen, H. P., Mahadevan, D., Bax, B. and Blundell, T. L. (1988). Evolutionary and functional relationships between the basic and acidic beta-crystallins. Exp. Eye Res. 46, 375-403. Slingsby, C. and Clout, N. J. (1999). Structure of the crystallins. Eye 13, 395-402. Van Leen, R. W., Breuer, M. L., Lubsen, N. H. and Schoenmakers, J. G. (1987). Developmental expression of crystallin genes: in situ hybridization reveals a differential localization of specific mRNAs. Dcv. Biol. 123, 338-345. van Rens, G. L., Raats, J. M., Driessen, H. P., Oldenburg, M., Wijnen, J. T., Khan, P. M., de, J. and Bloemendal, H. (1989). Structure of the bovine eye lens gamma s-crystallin gene (formerly beta s). Gene 78, 225-233. Velasco, P. T., Lukas, T .J., Murthy, S. N., Duglas-Tabor, Y., Garland, D. L. and Lorand, L. (1997). Hierarchy of lens proteins requiring protection against heat-induced precipitation by the alpha crystallin chaperone. Exp. Eye Res. 65,497-505. Weinreb, O, van Rens, G. L., Dovrat, A. and Bloemendal, H. (2000). In vitro filament-like formation upon interaction between lens alpha-crystallin and betaL-crystallin promoted by stress. Invest Ophthalmol. Vis. Sci. 41, 3893-3897. Westerfield, M. (ed). (1989). The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio). Eugene, Oregon: University of Oregon Press. Wistow, G., Anderson, A. and Piatigorsky, J. (1990). Evidence for neutral and selective processes in the recruitment of enzyme-crystallins in avian lenses. Proc. Natl. Acad. Sci. U. S. A. 87, 6277-6280. Wistow, G. (1990). Evolution of a protein superfamily: relationships between vertebrate lens crystallins and microorganism dormancy proteins. J. Mol. Evol. 30,140-145. Wistow, G. (1993). Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem. Sci. 18, 301-306. Wistow, G. (1993). Identification of lens crystallins: a model system for gene recruitment. Methods Enzymol. 224, 563-575. Wistow, G. J. and Piatigorsky, J. (1988). Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu. Rev. Biochem. 57,479-504. Wistow, G. J. and Piatigorsky, J. (1990). Gene conversion and splice-site slippage in the argininosuccinate lyases/delta-crystallins of the duck lens: members of an enzyme superfamily. Gene 96, 263-270. Wolpert, L. (ed.). (1998). Principles of development. New York. Oxford University Press. Wride, M. A. (1996). Cellular and molecular features of lens differentiation: a review of recent advances. Differentiation 61, 77-93. Xu, Y. S., Kantorow, M., Davis, J. and Piatigorsky, J. (2000). Evidence for gelsolin as a corneal crystallin in zebrafish. J. Biol. Chem. 275, 24645-24652. 孟慶聞 繆學祖 俞泰濟 秦克靜(1987)魚類學(形態、分類)上海科學技術出版社pp.154。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75252 | - |
| dc.description.abstract | 水晶體蛋白(Crystallins)是眼球水晶體最主要的構造性蛋白質。水晶體色呈透明且具有反射光線的功能,而這樣一個重要的視覺功能是來自於Crystallins之間的構形及交互作用。Crystallins在脊椎動物主要有a-、β-與γ-crystallin三個主要的families。本研究以β-crystallin family中的β-crystallin為主要研究對象。目的在於選殖出斑馬魚βB1-crystallin基因,探討其表現位置與胚胎時期mRNA的表現動態,並研究飢餓與激素調控對於βB1-crystallin表現的影響。 由已知物種的βB1-crystallin序列設計退化引子,以反轉錄聚合?連鎖反應獲得片段的斑馬魚βB1-crystallin cDNA序列。利用3’RACE取得3’端的序列,並以此片段序列作為探針,自斑馬魚cDNA基因庫中篩選出全長的βB1-crystallin cDNA序列。經過軟體分析得知斑馬魚βB1-crystallin全長943個核?酸,可轉譯成233個胺基酸。比對後亦發現斑馬魚βB1-crystallin與其他物種具有很高的同源性。由北方雜合反應及全體原位雜交法中發現,斑馬魚胚胎發育過程中,βB1-crystallin初期出現在20小時,並於48小時大量表現。觀察其表現位置得知,βB1-crystallin專一且大量的表現於眼睛,證實βB1-crystallin是一個具有組織專一性的基因。 在調控的實驗中,注射insulin family包括胰島素、類胰島素第一、第二型以及成長激素於斑馬魚成魚,另一方面,將斑馬魚進行數天的斷食。兩組均萃取不同時期的Total RNA,並設計此基因專一的引子,進行即時定量反轉錄聚合?連鎖反應(real-time quantitative。RT-PCR)。結果顯示,飢餓作用對斑馬魚體內βB1-crystallin的表現量影響不大,相較之下,激素的刺激確實會影響βB1-crystallin的表現,且有顯著性之差異。因此推測insulin family確實在斑馬魚βB1-crystallin表現上具有調控的功能,進而影響眼睛水晶體的發育與組成,亦在視覺上扮演重要的角色。 | zh_TW |
| dc.description.abstract | Crystallins have been recognized as the main structural protein of eye lens in vertebrates. The transparency and refractive properties of the lens are presumably linked to the high concentration of lens crystallin. However, the structure and function of β-crystallin is the least understood to date among the three major crystallin families. In this study,βB1-crystallin is molecularly cloned and sequenced from zebrafish. The expression and distribution of βB1-crystallin during embroygenesis is investigated, and the effects of starvation and various hormones on βB1-crystallin expression in zebrafish are further examined. βB1-crystallin was cloned from total RNA of zebrafish. With degenerate primers, we first obtained a partial cDNA sequence of 405 bp βB1-crystallin by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). The C-terminal end sequence with 680bp was cloned by 3’Rapid Amplification of cDNA Ends (3’RACE). Following by 24 hr zebrafish cDNA library screening, a complete (βB1-crystallin cDNA sequence of 943 bp in length was cloned. It contains 233 deduced amino acids and shares 57% to 68% identity with other vertebrates. The level of βB1-crystallin mRNA expression pattern in zebrafish embryos was substantially increased through early developmental stages in Northern blot. The result of whole-mount in situ hybridization showed that βB1-crystallin is abundant in the lens, but absent from other tissues. It suggests the tissue-specific expression of the gene concerned. To further analyze the effects of hormones and starvation on the expression of zebrafish βB1-crystallin, we intraperitoneally inject insulin and IGFs, and starved zebrafish for days. Real-time quantitative RT-PCR shows that insulin and IGFs evidently regulate zebrafish βB1-crystallin gene expression, and may play an important physiological role in the fish lens. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:23Z (GMT). No. of bitstreams: 0 Previous issue date: 2001 | en |
| dc.description.tableofcontents | 中文摘要……………………………………1 英文摘要……………………………………2 前言…………………………………………3 材料與方法………………………………12 一、實驗生物 二、生物材料 三、儀器和材料 四、反應試劑 五、研究架構 六、方法 (一)Total RNA萃取 (二)反轉錄聚合?連鎖反應 (三)Rapid Amplification of cDNA Ends (四)斑馬魚24小時cDNA基因庫篩選 (五)全體原位雜交法Whole-mount in situ hybridization (六)北方點墨法Northern blot (七)Real time反轉錄聚合?連鎖反應定量分析 結果…………………………………………35 一、斑馬魚βB1-crystallin的基因定序 二、βB1-crystallin的表現分析 三、飢餓與賀爾蒙調控對βB1-crystallin的影響 討論………………………………………40 一、斑馬魚βB1-crystallin的基因選殖 二、斑馬魚βB1-crystallin的基因表現 三、斑鳥魚βB1-crystallin與飢餓作用和荷爾蒙調控 總結……………………………………48 參考文獻………………………………50 圖表……………………………………69 附錄……………………………………70 | |
| dc.language.iso | zh-TW | |
| dc.title | 斑馬魚βB1-crystallin 之選殖,分子特性,胚胎表現及激素調控之研究 | zh_TW |
| dc.title | Molecular cloning, sequencing, developmental expression and hormonal regulation of βB1-crystallin in zebrafish (Danio rerio) | en |
| dc.date.schoolyear | 89-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 79 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
