Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75221
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author宋欣和zh_TW
dc.date.accessioned2021-07-01T08:12:16Z-
dc.date.available2021-07-01T08:12:16Z-
dc.date.issued2001
dc.identifier.citationAlcedo, J., Ayzenzon, M., Von O. T., Noll M. and Hooper, J.E. 1996. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the Hedgehog signal. Cell 86, 221-232.
Alcedo J, Zou Y, Noll M. 2000. Posttranscriptional regulation of smoothened is part of a self-correcting mechanism in the Hedgehog signaling system. Mol Cell 6, 457-65
Alexandre, C., Jacinto, A., and Ingham, P. W. 1996. Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes and Development 10, 2003-2013.
Aurelio A. T., Maura S., and Stephen M. C.. 2001. Shaping Morphogen Gradients. Cell 105, 559-562,
Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C., and Kornberg, T. B. 1997. Proteolysis that is inhibited by Hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043-1053.
Basler, K. and Struhl, G. 1994. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208-214.
Bejsovec, A. and Wieschaus, E. 1993. Segment polarity gene interactions modulate epidermal patterning in Drosophila embryos. Development 119, 501-17.
Bellaiche Y., The I. and Perrimon N. 1998. tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 5-88.
Bernfield M., Kokenyesi R., Kato M., Hinkes MT, Spring J., Gallo RL, Lose EJ. 1992. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 8, 365-93
Bernfield M., Gotte M., Park PW, Reizes O., Fitzgerald ML, Lincecum J., Zako M. 1999. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68, 729-77.
Binari RC, Staveley BE, Johnson WA, Godavarti R, Sasisekharan R, Manoukian AS. 1997. Genetic evidence that heparin-like glycosaminoglycans are involved in Wingless signaling. Development 124, 2623-32
Brand, A. H., Perrimon, N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-15.
Burke, R., Nellen, D., Bellotto, M., Hafen, E., Senti, K. A., Dickson, B. J. and Basler, K. 1999. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 99, 803-815.
Capdevila, J., Pariente, F., Sampedro J., Alonso, J. L. and Guerrero, I. 1994. Subcellular localization of the segment polarity protein Patched suggests an interaction with the Wingless reception complex in Drosophila embryos. Development 120, 987-98.
Chen Y, Struhl G. 1996. Dual roles for Patched in sequestering and transducing Hedgehog. Cell 87, 553-63
Chou, T. B. and Perrimon, N. 1992. Use of yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643-653.
Chou, T. B., Noll, E. and Perrimon, N. 1993. Autosomal P[ovoD1] dominant female sterile insertions in Drosophila and their use in generating germline chimeras. Development 119, 1359-1369.
Chou, T. B. and Perrimon, N. 1996. The autosomal FLP-DFS technology for generating mosaics in Drosophila melanogaster. Genetics 144, 1673-1679.
DiNardo S, Sher E, Heemskerk-Jongens J, Kassis JA, O'Farrell PH. 1988.Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature 332, 604-9
Dominguez M, Brunner M, Hafen E, Basler. 1996. Sending and receiving the Hedgehog signal: control by the Drosophila Gli protein Cubitus interruptus. Science 272,1621-5
Farese, R.V., Jr, and Herz, J. 1998. Cholesterol metabolism and embryogenesis. Trends Genet 14,115-120.
Ferguson G, Watterson KR, Palmer TM. 2000. Subtype-specific kinetics of inhibitory adenosine receptor internalization are determined by sensitivity to phosphorylation by G protein-coupled receptor kinases. Mol Pharmacol 57, 546-52
Forbes AJ, Nakano Y, Taylor AM, Ingham PW. 1993..Genetic analysis of Hedgehog signalling in the Drosophila embryo. Dev Suppl: 115-24.
Gelin W., Kazuhito A., Bing W., and Jin J.. 2000.Interactions with Costa12 and Suppressor of fused regulate nuclear translocation and activity of Cubitus interruptus. Genes and Development 14, 2893-2905.
Gil, G., Faust, J. R., Chin, D. J., Goldstein, J. L., and Brown, M. S. 1985. Membrane-bound domain of HMGCoA reductase is required for sterol-enhanced degradation of the enzyme. Cell 41, 249-258.
Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP. 1996.Conservation of the Hedgehog/Patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes and Development, 10, 301-12
Hammerschmidt, M., Brook, A. and McMahon, A. P. 1997. The world according to hedgehog. Trends in Genetics 13, 14-21.
Hacker U, Lin X, Perrimon N. 1997.The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565-73
Hua, X., Nohturfft, A., Goldstein, J. L., and Brown, M. S. 1996. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 87, 415-426.
Ingham PW, Taylor AM, Nakano Y. 1991. Role of the Drosophila patched gene in positional signalling. Nature 353, 184-7
Ingham PW. 1993. Localized hedgehog activity controls spatial limits of wingless transcription in the Drosophila embryo. Nature 366, 560-2
Ingham, P. W. 2000. Hedgehog signaling: How cholesterol modulates the signal. Current Biology 10, R180-R183.
Ingham, P. W., Taylor, A. M. and Nakano. Y. 1991. Role of the Drosophila patched gene in positional signaling. Nature 353, 184-187.
Jiang, J., and Struhl, G. 1998. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493-496.
John J. L., Doris P. v. K., Suki P., and Philip A B.. 1992. Secretion and Localization Transcription Suggest a Role in Positional Signaling for Products of the segmentation Gene hedgehoge. Cell 71,33-50
Incardona JP, Eaton S. 2000. Cholesterol in signal transduction. Curr Opin Cell Biol 12, 193-203
Karpen HE, Bukowski JT, Hughes T, Gratton JP, Sessa WC, Gailani MR. 2001. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J Biol Chem 276, 19503-11
Khare N, Baumgartner S. 2000. Dally-like protein, a new Drosophila glypican with expression overlapping with wingless. Mech Dev 99, 199-202
Kjellen L, Lindahl U.. 1991. Proteoglycans: structures and interactions. Annu Rev Biochem 60, 443-475.
Lander AD, Selleck SB. 2000.The elusive functions of proteoglycans: in vivo veritas. J Cell Biol 148, 227-32
Lai ZC, Fetchko M, Li Y, 1997. Repression of Drosophila photoreceptor cell fate through cooperative action of two transcriptional repressors Yan and Tramtrack. Genetics 147, 1131-7
Lawrence, P., Casal, J. and Struhl, G. 1999. The Hedgehog morphogen and gradients of cell affinity in the abdomen of Drosophila. Development 126, 2441-2449.
Lecuit, T., Brook, W. J., Ng, M., Calleja, M., Sun, H., Cohen, S. M. 1996. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387-93.
Lee, J. J., Ekker, S. C., von Kessler, D. P., Porter, J. A., Sun, B. I.. and Beachy, P. A. 1994. Autoproteolysis in Hedgehog protein biogenesis. Science 266, 1528-1537.
Lepage T, Cohen SM, Diaz-Benjumea FJ, Parkhurst SM. 1995.Signal transduction by cAMP-dependent protein kinase A in Drosophila limb patterning. Nature 373(6516):711-5
Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, McMahon AP. 2001. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by ptc 1. Cell 105, 599-612
Liao GC, Rehm EJ, Rubin GM. 2000.Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci USA 7, 3347-51
Lin X, Buff EM, Perrimon N, Michelson AM. 1999.Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126, 3715-23
Lin X, Perrimon N. 1999.Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400, 281-4
Liscum L, Klansek JJ. 1998.Niemann-Pick disease type C. Curr Opin Lipidol 9, 131-5
Marigo, V., Davey, R. A., Zuo, Y., Cunningham, J. M. and Tabin, C. J. 1996. Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176 179
Martizez Arias A, Baker NE, Ingham PW. 1988. Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103, 157-70
Murone, M., Rosenthal, A., and de Sauvage, F.J. 1999. Hedgehog Signal Transduction: From Flies to Vertebrates. Experimental Cell Research 253, 25-33.
Natalie D., Dagmar N., Lidia P., and Stephen M. C.. 2000. Hedgehog Induces Opposite Changes in Turnover and Subcellular Localization of Patched and Smoothened. Cell 102, 521-531
Nellen D, Burke R, Struhl G, Basler K. 1996. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357-68
Neumann C, Cohen S.. 1997. Morphogens and pattern formation. Bioessays 19, 721-9
Pan D, Rubin GM. 1995. cAMP-dependent protein kinase and Hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell 80, 543-52
Peifer, M. and Bejsovec. 1992. A knowing your neughbors: cell interactions determine intrasegmental pattering in Drosophila. Trends genet. 8,243-248.
Pepinsky, R. B., Zeng, C., Wen, D., Rayhorn, P., Baker, D. P., Williams, K. P., Bixler, S. A., Ambrose, C. M., Garber, E. A., Miatkowski, K., Taylor, F. R., Wang, E. A., Galdes, A.1998. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037-45.
Perrimon, N. 1994. The genetic basis of patterned baldness in Drosophila. Cell 76, 781-784.
Perrimon, N., Lanjuin, A., Arnold, C. and Noll, E. 1996. Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. loci on the second and third chromosomes identified by P-element-induced mutations. Genetics 121, 333-352.
Pham A, Therond P, Alves G, Tournier FB, Busson D, Lamour-Isnard C, Bouchon BL, Preat T, Tricoire H. 1995. The Suppressor of fused gene encodes a novel PEST protein involved in Drosophila segment polarity establishment. Genetics 140(2):587-98
Porter, J. A., Ekker, S. C., Park, W. J., von Kessler, D. P., Young, K. E., Chen, C. H., Ma, Y., Woods, A. S., Cotter, R. J. and Koonin, E. V. 1996a. Hedgehog patterning activity: role of a lipophilic modifica-tion mediated by the carboxy-terminal autoprocessing domain. Cell 86, 21-34.
Porter, J. A., Young, K. E. and Beachy, P. A. 1996b. Cholesterol modification of Hedgehog signaling proteins in animal development. Science 274, 255-259.
Porter, J. A., von Kessler, D. P., Ekker, S. C., Young, K. E., Lee, J.J., Moses, K., Beachy, P. A. 1995. The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374, 363-366.
Price, M. A. and Kalderon, D. 1999. Proteolysis of Cubitus interruptus in Drosophila requires phosphorylation by Protein Kinase A. Development 126, 4331-4339.
Rapraeger AC, Krufka A, Olwin BB. 1991. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705-8
Reichsman F, Smith L, Cumberledge S. 1996.Glycosaminoglycans can modulate extracellular localization of the Wingless protein and promote signal transduction. J Cell Biol 135,819-27
Rivera-Pomar R, Jackle H. 1996. From gradients to stripes in Drosophila embryogenesis: filling in the gaps. Trends Genet 12,478-83
Rietveld A, Neutz S, Simons K, Eaton S. 1999.Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 274, 12049-54
Robbins, D. J., Nybbaken, K. E., Kobayashi, R., Sisson, J. C., Bishop, J. M. and Th?rond, P. P. 1997. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein Costal-2. Cell 90, 225-234.
salmivirta M, Lidholt K, Lindahl U. 1996. Heparan sulfate: a piece of information. FASEB J 10:1270-1279.
Sen J, Goltz JS, Stevens L, Stein D. 1998. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95, 471-81
Selleck SB. 2000 Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16, 206-12
Sigfried, E. Chou, T. B., and Perrimon, N. 1992. Wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and established cell fate. Cell 71, 1167-1179
Siegfried E, Wilder EL, Perrimon N. 1994.Components of Wingless signalling in Drosophila. Nature 367, 76-80
Sisson, C. J., Ho, K. S., Suyama, K. and Scott, M. P. 1997. Costal-2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235-245.
St Johnston, D., Nusslein-Volhard, C. 1992. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201-19.
Strutt DI, Wiersdorff V, Mlodzik M. 1995. Regulation of furrow progression in the Drosophila eye by cAMP-dependent protein kinase A. Nature 373, 705.
Tabata, T. and Kornberg, T. B. 1994. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89-102.
Tabata, T., Eaton, S., Kornberg, T. B. 1992. The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev. 6, 2635-45.
Tabin, C. J. and McMahon A. P. 1997. Recent advances in Hedgehog signaling. Trend in Cell Biol. 7, 442-446.
The, I., Bellaiche, Y. and Perrimon, N. 1999. Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633-639.
Th?rond, P. P., Knight, J. D., Kornberg, T. B. and Bishop, J. M. 1996. Phosphorylation of the fused protein kinase in response to signaling from hedgehog. Proc. Natl. Acad. Sci. USA 93, 4224-4228.
Tsuda M., Kamimura K., Nakato H., Archer M., Staatz W., Fox B., Humphrey M., Olson S., Futch T., Kaluza V., Siegfried E., Stam L., Selleck SB. 1999. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276-80
van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse. 1993.Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J 12, 5293-302
van den Heuvel M, Klingensmith J, Perrimon N, Nusse R. 1993. Cell patterning in the Drosophila segment: engrailed and wingless antigen distributions in segment polarity mutant embryos. Dev Suppl 105-14
van den Heuvel, M. and Ingham, P. W. 1996. smoothened encodes a receptor-like serpentine protein required for hedgehog signaling. Nature 382, 547-551.
Wang, Y. C. 1998. Developmental genetics characterization of a navel Drosophila gene, taroid, in Hedgehog signaling. Master thesis. Department of Zoology. National Taiwan University. Taiwan.
Xu, T. and Rubin, G. 1993. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223-1237.
Yoffe KB, Manoukian AS, Wilder EL, Brand AH, Perrimon N.. 1995.Evidence for engrailed-independent wingless autoregulation in Drosophila. Dev Bio 170, 636-50
The sterol-sensing domain of Patched protein seems to control Martin V, Carrillo G, Torroja C, Guerrero I. 2001. Smoothened activity through Patched vesicular trafficking. Curr Biol 11, 601-7
Wang G, Wang B, Jiang J. 1999. Protein kinase A antagonizes Hedgehog signaling by regulating both the activator and repressor forms of Cubitus interruptus. Genes Dev 13, 2828-37
Zecca M, Basler K, Struhl G. 1995. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121, 2265-78
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75221-
dc.description.abstract在脊椎動物的胚胎發育中,Hedgehog(Hh)分泌性蛋白質路徑屬於一個重要的訊息傳遞鏈,負責神經管,腳,肺,皮膚,頭髮,牙齒的發育;大部份Hh訊息傳遞鏈內的成員具有高度的演化保守性,而且其功能大部份都是從果蠅研究中得到。
在果蠅翅碟中,Hh後半區的Hh產生細胞中表達產生、在Golgi中進行自我裂解、結合膽固醇成為具有的功能HhN-膽固醇分子、經目前未知的蛋白質傳輸到細胞膜上,細胞膜上的HhN-膽固醇分子再藉由Dispatched(Disp)膜蛋白轉送前半區的Hh接收細胞,啟動Hh標的基因產物如Patched(Ptc,Hh的受體)和Dpp(Decapentaplegic,果蠅的TGF-β同源基因)蛋白質的表達;Dpp型態因數向外散佈形成蛋白質濃度階梯決定翅碟細胞的細胞命運。
rotini(rti)是一個新的節向基因與負責運送傳輸蛋白質,具有70%的相同性,推測Rti的功能與細胞內蛋白質的運送傳輸(protein trafficking)有關。當在翅碟前半區rti突變區域位時,位在緊鄰前後半區界線的Ptc蛋白質表現範圍從野生型的5-6個細胞寬減少到2-3個細胞寬,但位在突變區域內較前方的野生型Hh接收細胞卻沒有Ptc表現;這顯示HhN-膽固醇分子無法通過rti突變區域被運送到較前方的野生型Hh接收細胞。rti在前半區的突變性狀與tout velu(ttv)(影響proteoglycan合成的基因)位在前半區的突變行為相似,我們推測Rti與Ttv皆參與在HhN-膽固醇分子在Hh接收細胞間的傳送。
當rti突變區域位在翅碟後半區Hh產生細胞區時,Hh蛋白質表現量下降、但不影響HhLacZ的表現量,這顯示Rti參與Hh在轉錄過程以後的製造行為。基於上述的資料,推測rti的功能之一與Hedgehog運送與製造。
zh_TW
dc.description.abstractIn the embryogenesis of vertebrate, Hh signaling pathway is an important signaling pathway that is responsible for the development of neural tube, limb, lung, skin, hair, teeth; most components in Hh signaling pathway are evolutionally conserved. The functions of most components in Hh signaling pathway are derived from the studies in Drosophila.
In Hh production cells, after autoprocessing and cholesterol modification in Golgi, Hh processing protein (Hh-Np) is trafficking to lipid rafts in plasma membrane by unknown factor(s). Hh is displaced from the lipid raft by Dispatched (Disp) and transported to receiving cells to activate Hh target genes, patched (ptc) and dpp (decapentaplegic). Dpp forms a protein gradient to pattern the cell fates in wing discs.
rotini(rti), a novel Drosophila segment polarity gene, is about 70% identity with the potein that involves in protein trafficking. Rti may involve in protein trafficking in the cells. In rti mutant clone, ptc expression is only weakly induced about 2 or 3-row cells adjacent A-P border in the anterior compartment in wing disc. But ptc expression is not appeared in the wild type cells located on anterior to rti mutant clone. It is suggested that Hh-Np cannot be transported to the wild-type cells across the rti mutant clone. This situation is like the mutant clone of tout velu (ttv) that is involved in proteoglycan synthesis in wing disc. Both rti and ttv may be required for Hh transportation in Hh receiving cells.
In rti mutant clone, Hh expression is diminished in the posterior compartment in wing disc, but Hh-LacZ expression is not affected. Our finding suggested that rti might involve in the post-translation process of Hh.
According to the above results, we suggest that rti may be required for Hh production and transportation.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:16Z (GMT). No. of bitstreams: 0
Previous issue date: 2001
en
dc.description.tableofcontents中文摘要:………………………………………………………………………………………………………………………1
Abstract………………………………………………………………………………………………………………………3
Table Content…………………………………………………………………………………………………………………5
List of Tables………………………………………………………………………………………………………………10
List of Figure………………………………………………………………………………………………………………11
Introduction…………………………………………………………………………………………………………………16
Anterior-posterior axis formation in Drosophila embryo…………………………………………………………16
Wingless and Hedgehog signaling pathway……………………………………………………………………………17
Maintainence of the parasegment boundary……………………………………………………………………………18
Hh signaling pathway………………………………………………………………………………………………………18
Hh transportation from posterior compartment to anterior compartment………………………………………20
The posttranslational modification of Hh……………………………………………………………………………20
Dispatched……………………………………………………………………………………………………………………22
Heparan Sulfate Proteglycan……………………………………………………………………………………………23
The receptors of Hh………………………………………………………………………………………………………25
Model of Hh transportation………………………………………………………………………………………………27
Missing link in this model………………………………………………………………………………………………27
A novel segment polarity gene rotini…………………………………………………………………………………29
Materials and Methods……………………………………………………………………………………………………30
Fly stocks and maintenance………………………………………………………………………………………………30
The autosomal FLP-DFS technique………………………………………………………………………………………30
P-transposon induced mutagenesis screen for homozygous lethal mutation on the second chromosome…31
Germ-line clone production………………………………………………………………………………………………31
Cuticular preparation……………………………………………………………………………………………………32
IPCR……………………………………………………………………………………………………………………………32
Plasmid rescue………………………………………………………………………………………………………………33
Isolation plasmid DNA from Bacteria…………………………………………………………………………………34
Imprecise Excision…………………………………………………………………………………………………………34
Generation of recombinant clones in somatic tissues……………………………………………………………34
Fluorescence imaginal discs antibody staining……………………………………………………………………35
DEPC-distilled H20…………………………………………………………………………………………………………37
X-gal staining for embryo………………………………………………………………………………………………37
Mis-expression experiment………………………………………………………………………………………………38
Single fly PCR………………………………………………………………………………………………………………38
Result:………………………………………………………………………………………………………………………40
P-induced lethal lines with specific maternal effect……………………………………………………………40
Group 1. Germ cell lethal………………………………………………………………………………………………40
Group 2. Abnormal oogenesis……………………………………………………………………………………………40
Group 3. Maternal effect phenotype……………………………………………………………………………………41
Group 4. No maternal effect……………………………………………………………………………………………41
rotini is a novel mutation exhibiting lawn-of-denticles embryonic phenotype……………………………41
The embryonic phenotype of P1164A4……………………………………………………………………………………43
rotini is a novel segment polarity gene……………………………………………………………………………44
The lethality of is caused by P element insertion………………………………………………………………45
P1164A4 element disrupts the annotated gene………………………………………………………………………45
P1164A4 element may affect two genes…………………………………………………………………………………46
The segment polarity embryonic phenotype can be phenocopied by RNA interference of the predicted gene……………………………………………………………………………………………………………………………47
LacZ expression pattern of rtiA4 heterozygous embryos…………………………………………………………48
rotini is involved in Hh transportation……………………………………………………………………………49
rotini is required for Hh production…………………………………………………………………………………50
The ptc expression is diminished in the big clone across the A-P boredr…………………………………51
rotini acts in Hh signaling pathway…………………………………………………………………………………52
rti acts in Wg signaling pathway………………………………………………………………………………………53
Somatic clones in adult…………………………………………………………………………………………………55
Discussion:…………………………………………………………………………………………………………………56
Rti is a putative coat protein…………………………………………………………………………………………56
Rotini is required for the Hh transportation………………………………………………………………………57
Rti is required for Hh production……………………………………………………………………………………57
rotini acts in both Hh and Wg pathway………………………………………………………………………………58
Is Rti protein a common factor in cells……………………………………………………………………………59
Two modes of rti function………………………………………………………………………………………………60
1. rotini may involve in ttv-dependent PG synthesis……………………………………………………………60
2. rti may affect trafficking the cargo to membrane……………………………………………………………61
Acknowledgment………………………………………………………………………………………………………………63
Reference……………………………………………………………………………………………………………………64
dc.language.isozh-TW
dc.title一個新的高基氏體蛋白質,Rotini,參與果蠅Hedgehog的製造與傳遞zh_TW
dc.titleRotini, a novel putative Golgi protein, is required for the production and transportation of Drosophila Hedgehogen
dc.date.schoolyear89-2
dc.description.degree碩士
dc.relation.page76
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved