Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75207
完整後設資料紀錄
DC 欄位值語言
dc.contributor.authorNei-Yin Wengen
dc.contributor.author翁乃茵zh_TW
dc.date.accessioned2021-07-01T08:12:13Z-
dc.date.available2021-07-01T08:12:13Z-
dc.date.issued2001
dc.identifier.citationAbo, A., Pick, E., Hall, A., Totty, N., Teahan, C. G., and Segal, A. W. (1991). Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353, 668-670.
Aelst, L. V. and D'Souza-Schorey, C. (1997). Rho GTPases and signaling networks. Gene Dev. 11, 2295-2322.
Agnel, M., Roder, L., Vola, C., and Griffin, S. R. (1992). A Drosophila rotund transcript expressed during spermatogenesis and imaginal disc morphogenesis encodes a protein, which is similar to human Rac GTPase-activating (racGAP) proteins. Mol. Cell. Biol. 12, 5111-5122.
Bender, G. M., Tinley, T. L., Tang, X., and Borodovsky, M. (1996). The Caenorhabditis elegans gene unc-89, required for muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains. J. Cell Biol. 132, 835-848.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Cerione, R. A., and Zheng, Y. (1996). The Db1 family of oncogenes. Curr. Opin. Cell. Biol. 8, 216-222.
Chalfie, M., and Sulston, J. (1981). Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358-370.
Chalfie, M., Sulston, J. E., White, J. G. Southgate, E., Thomson, J. N., and Brenner, S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956-964.
Chalfie, M., and Thomson, J. N. (1982). Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. J. Cell. Biol. 93, 15-23.
Chang, E. C., Barr, M., Wang, Y, Jung, V., Xu, H. P., and Wigler, M. H. (1994). Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 79, 131-141.
Chen, G. C., Zheng, L., and Chan, C. S. (1996). The LIM domain-containing Dbm1 GTPase-activating protein is required for normal cellular morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 1376-1390.
Chen, W., Lim, H. H., and Lim, L. (1993). A new member of the ras superfamily, the rac1 homologue from Caenorhabditis elegans. J. Biol. Chem. 268, 320-324.
Chen, W., and Lim, L. (1994). The Caenorhabditis elegans small GTP-binding protein RhoA is enriched in the nerve ring and sensory neurons during larval development. J. Biol. Chem. 269, 32394-32404.
Chung, S., Gumienny, T. L., Hengartner, M. O., and Driscoll, M. (2000). A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans [In Process Citation]. Nat Cell Biol 2, 931-7.
Conradt, B., and Horvitz, H. R. (1998). The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519-29.
Debant, A., Serra-Pages, C., Seipel, K., O'Brien, S., Tang, M., and Park, S. H. (1996). The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl. Acad. Sci. 93, 5466-5471.
Diekmann, D., Brill, S., Garrett, M.D., Totty, N., Hsuan, J., Monfries, C. Hall, C., Lim, L., and Hall, A. (1991). Bcr encodes a GTPase-activating protein for p21rac. Nature 351, 400-402.
Downward, J. (1996). Control of ras activation. Cancer Surv. 27, 87-100.
Ellis, C., Moran, M., McCormick, F., and Pawson, T. (1990). Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinase. Nature 343, 377-381.
Ellis, H. M., and Horvitz, H. R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817-29.
Ellis, R. E., Jacobson, D. M., and Horvitz, H. R. (1991a). Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79-94.
Ellis, R. E., and Horvitz, H. R. (1991). Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112, 591-603.
Foster, R., Hu, K., Lu, Y, Nolan, K. M., Thissen, J., Settleman, J. (1996). Identification of a novel human rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol. Cell Biol. 16, 2689-2699.
Fukumoto, Y, Kaibuchi, K., Hori, Y., Fujioka, H., Araki, S., Uede, T., Kikuchi, A., and Takai, Y (1990). Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5, 1321-1328.
Hall, A. (1990). ras and GAP-Who's controlling whom Cell 61, 921-923.
Hall, A. (1994). Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu. Rev. Cell Biol. 10, 31-54.
Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-514.
Hamelin, M., Scott, I. M., Way, J. C., and Culotti, J. G. (1992). The mec-7 beta-tubulin gene of Caenorhabditis elegans is expressed primarily in the touch receptor neurons. Embo J 11, 2885-93.
Hart, C. M., and Roberts, J. W. (1994). Deletion analysis of the lambda tR1 termination region. Effect of sequences near the transcript release sites, and the minimum length of rho-dependent transcripts. J. Mol. Biol. 237, 255-265.
Hart, M. J., Eva, A., Evans, T., Aaronson, S. A., and Cerione, R. A. (1991). Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the db 1 oncogene product. Nature 354, 311-314.
Hengartner, M. O., Ellis, R. E., and Horvitz, H. R. (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494-9.
Hengartner, M. O., and Horvitz, H. R. (1994). C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bc1-2. Cell 76, 665-676.
Hirao, M., Sato, N., Kondo, T., Yonemura, S., Monden, M., Sasaki, T., Takai, Y, Tsukita, S., and Tsukita, S. (1996). Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association:Possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J. Cell Biol. 135, 37-51
Horii, Y., Beeler, J. F., Sakaguchi, K., Tachibana, M., and Miki, T. (1994). A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J. 13, 4776-4786.
Horvitz, H. R., Shaham, S., and Hengartner, M. O. (1994). The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 59, 377-85.
Kimble, J., and Hirsh, D. (1979). The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev. Biol. 87:396-417.
Kozma, R., Ahmed, S., Best, A., and Lim, L. (1996). The GTPase-activating protein n-chimaerin cooperates with Rac 1 and Cdc42Hs to induce the formation of lamellipodia and filopodia. Mol. Cell. Biol. 16, 5069-5080.
Lancaster, C. A., Taylor, H. P., Self, A. J., Brill, S., Van Erp, H. E., and Hall, A. (1994). Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases. J. Biol. Chem. 269, 1137-1142.
Leonard, D., Hart, M. J., Platko, J. V., Eva, A., Henzel, W., Evans, T., and Cerione, R. A. (1992). The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein. J. Biol. Chem. 267, 22860-22868.
Leung, T., How, B. E., Manser, E., and Lim, E. (1993). Germ cell - chimaerin, a new GTPase-activating protein for p21rac, is specifically expressed during the acrosomal assembly stage in rat testis. J. Biol. Chem. 268, 3813-3816.
Liu, Q. A., and Michael O. H. (1998). Candidate adaptor protein CED-6 promotes the engulfment oh apoptotic cells in C. elegans. Cell 93, 961-972.
Luo, L., Liao, Y. J., Jan, L. Y, and Jan, Y. N. (1994). Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes & Dev. 8, 1787-17802.
Luo, L., Hensch, T. K., Ackerman, L., Barbel, S., Jan, L. Y., and Jan, Y. N. (1996). Differential effects of the Rac GTPase on Purkinge cell axons and dentritic trunks and spines. Nature 379, 837-840.
Manser, E., Chong, C., Zhao, Z. S., Leung, T., Michael, G., Hall, C., and Lim, L. (1995). Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J. Biol. Chem. 270, 25070-25078.
Martinez-Arias, A. (1993). Development and patterning of the larval epidermis of Drosophila. In the Development of Drosophila. pp. 517-608.
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Mello, C. C., Kramer, J. M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959-3970.
Nobes, C. D., and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62.
Reddien, P. W. and Horvitz, H. R. (2000). CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131-136.
Ridley, A. J. and Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and stress fibers in response to growth factors. Cell 70, 389-399.
Ridley, A. J., Self, A. J., Kasmi, F., Paterson, H. F., Hall, A., Marshall, C. J., and Ellis, C. (1993). Rho family GTPase activating proteins p190, bcr and rhoGAP show distinct specificities in vitro and in vivo. EMBO J. 12, 5151-5160.
Ridley, A. J., and Paterson, H. F. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401-410.
Ron, D., Zannini, M., Lewis, M., Wickner, R. B., Hunt, L. T., Graziani, G., Tronick, S. R., Aaronson, S. A., and Eva, A. (1991). A region of proto-dbl essential for its transforming activity shows sequence similarity to a yeast cell cycle gene. CDC24, and the human breakpoint cluster gene, bcr. New Biol. 3, 372-379.
Schmidt, A., Bickle, M., Beck, T., and Hall, M. N. (1997). The yeast phosphatidylinositol kinase homolog TOR2 activates RHO 1 and RHO2 via the exchange factor ROM2. Cell 88, 531-542.
Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegard, M., Betsholtz, C. and Di Fiore, P. P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293.
Settleman, J., Narasimhan, V., Foster, L. C., and Weinberg, R. A. (1992). Molecular cloning of cDNAs encoding the GAP-associated protein p190: Implications for a signaling pathway from rats to the nucleus. Cell 69, 539-549.
Smits E., Criekinge, W. V., Plaetinck, G., and Bogaert, T. (1999). The human homologue of Caenorhabditis elegans CED-6 specifically promotes phagocytosis of apoptotic cells. Curr. Biol. 9, 1351-1354.
Steven R., Kubiseski, T. J., Zheng, H., Kulkarni, S., Mancillas, J., Morales, A. R., Hogue, C. W. V., Pawson, T., and Culotti, J. (1998). UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785-795.
Stevenson, B. J., Ferguson, B., De, V. C., Bi, E., Pringle, J. R., Ammerer, G., and Sprague, G. J. (1995). Mutation of RGA1, which encodes a putative GTPase-activating protein for the polarity-establishment protein Cdc42p, activates the pheromone response pathway in the yeast Saccharomyces cerevisiae. Genes & Dev. 9, 2949-2963.
Stone, M., Hoshino, M., Suzuki, E., Kuroda, S., Kaibuchi, K., Nakagoshi, H., Saigo, K., Nabeshima, Y., and Hama, C. (1997). Still life, a protein in synaptic terminals of Drosophila homologous to GAP-GTP exchangers. Science 275, 543-547.
Sulston, J. E., and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56: 110-156.
Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100: 64-119.
Takai, Y., Sasaki, T., Tanaka, K., and Nakanishi, H. (1995). Rho as a regulator of the cytoskeleton. Trends Biochem. Sci. 20, 227-231.
Tsukita, S., Oishi, K., Sato, N., Sagara, J., Kawai, A., and Tsukita, S. (1994). ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell Biol. 126, 391-401.
Tsukita, S., Yonemura, S., and Tsukita, S. (1997). ERM proteins: Head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem. Sci. 22, 53-58.
Ueda, T., Kikuchi, A., Ohga, N., Yamamoto, J., and Takai, Y. (1990). Purification and characterization from bovine beain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J. Biol. Chem. 265, 9373-9380.
Van Aelst, L. and D'Aouza-Schorey, C. (1997). Rho GTPases and signaling networks. Genes Dev. 11, 2295-2322.
Wu Y. C., and Horvitz, H. R. (1998). C.elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501-504.
Wu, Y. C., and Horvitz, H. R. (1998). The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951-60.
Zheng Y., Zangrilli, D., Cerione, R. A., and Eva, A. (1996). The pleckstrin homology domain medicates transformation by oncogenic dbl through specific intracellular targeting. J. Biol. Chem. 271, 19017-19020.
Zhou, Z., Hartwieg, E., and Horvitz, H. R. (2001). CED-1 Is a tansmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43-56.
Zipkin I. D., Kindt, R. M., and Kenyon, C. J. (1997). Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 90, 883-894.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75207-
dc.description.abstractCED-10屬於Rho family GTPases的成員。而線蟲的ced-2, ced-5, ced-10, 和ced-12基因調控了細胞屍體吞噬過程以及生殖器官頂端細胞(distal tip cells)的遷移過程。雖然活體外的實驗顯示,活化的Rac會引發Swiss 3T3纖維母細胞的細胞膜表面皺褶的形成,然而對於活體內Rac的功能尚有許多探討的空間。當異位且過量表達constitutively activated ced-10(ced-10V12)時,線蟲的六個感受機械性感覺細胞(mechanosensory touch receptor neurons)會不正常的生長;而當表達過量的ced-10基因時,則會出現不同於ced-10V12的突變表型,如在尾部出現多餘的感覺細胞。這可能是由於細胞譜系(cell lineage)遭到改變所致。
unc-73在C. elegans的細胞遷移過程(cell migration)以及指引神經走向的過程(axon guidance)扮演著重要的角色。藉由生化實驗,我們證明瞭UNC-73的第一個DH domain對CED-10/Rac1具有催化GDP置換成GTP的能力。除此之外,也證明瞭在活體外,UNC-73可以和CED-5結合,再加上我們的遺傳分析,我們推測,UNC-73可能連接上游的訊息,進一步去活化CED-10,促使C. elegans活體內細胞遷移的過程。
zh_TW
dc.description.abstractCED-10 belongs to Rho family GTPases. In C. elegans, ced-2, ced-5, ced-10 and ced-12 control phagocytosis of cell corpses and migration of gonadal distal tip cells. Although in vitro function of Rac has been shown to regulate a signal transduction pathway in Swiss 3T3 cells that links extracellular signals to the formation of lamellipodia, the in vivo function of Rac remains to be explored. I found that ectopic expression of constitutively activated ced-10 (designated ced-10V12) results in many defects in six touch cells in C. elegans. Interestingly, ced-10 overexpression causes different phenotype from that of ced-10V12, such as extra PLM-like cell body. This may due to the alteration of cell lineage.
unc-73 is required for cell migrations and axon guidance in C. elegans. Biochemical experiment suggests that the first DH domain of UNC-73 activates CED-10. In addition, we showed that UNC-73 and CED-5 physically interact in vitro, together with our genetic data, raising the possibility that UNC-73 may link upstream signaling complexes and CED-10, mediates cell migration in C. elegans.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:13Z (GMT). No. of bitstreams: 0
Previous issue date: 2001
en
dc.description.tableofcontents致謝
中文摘要…………………………………………………1
英文摘要…………………………………………………2
Introduction……………………………………………3
Materials and Method…………………………………18
Results…………………………………………………23
Discussion………………………………………………31
References………………………………………………39
Figure……………………………………………………51
Table……………………………………………………56
dc.language.isozh-TW
dc.titleUNC-73的in vitro功能及ced-10V12在線蟲touch cells所扮演的角色zh_TW
dc.titleIn vitro function of UNC-73 and the role of ced-10V12 in C. elegans touch cellsen
dc.date.schoolyear89-2
dc.description.degree碩士
dc.relation.page58
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved