Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.authorChia-Hao Changen
dc.contributor.author張家豪zh_TW
dc.date.accessioned2021-07-01T08:12:12Z-
dc.date.available2021-07-01T08:12:12Z-
dc.date.issued2001
dc.identifier.citation李淑貞.1999.南仁山六種樹苗在二種海拔高林隙及林下環境的生理及生長反應.國立屏東科技大學熱帶農業研究所碩士論文.
沈明來.1998.實用多變數分析.九州圖書文物有限公司
林琦珍.1998.南仁山低地雨林樹冠層葉片結構之研究.國立臺灣大學植物科學研究所碩士論文.
崔君至.2000.南仁山區土壤性質在不同地形位置.國立臺灣大學農業化學研究所碩士論文.
張正平.1998.南仁山低地雨林凋落物之研究.國立臺灣大學植物科學研究所碩士論文.
陳毓昀.1998.南仁山低地雨林凋落物分解之研究.國立臺灣大學植物科學研究所碩士論文.
廖啟政.1995.南仁山亞熱帶雨林海拔梯度與植被組成、結構、歧異度及分佈類型的關係.國立臺灣大學植物科學研究所碩士論文.
賴宜鈴.1996.南仁山亞熱帶雨林小苗動態及地被植物組成之研究.國立臺灣大學植物科學研究所碩士論文.
蘇夢淮.1993.南仁山亞熱帶雨林樹冠層葉片結構之研究.國立臺灣大學植物科學研究所碩士論文.
蘇鴻傑.1984.臺灣天然林氣候與植群型之研究(二)山地植群帶與溫度梯度之關係.中華林學季刊.17(4):57-73。
Attiwill P M and Adams M A. 1993. Tansley review No. 50: Nutrient cycling in forest. New Phytol. 124:561-582.
Binkley D and Matson P. 1983. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Sci. Soc. Am. J. 47: 1050-1052.
Binkley D, Aber J, Pastor J and Nadelhoffer K. 1986. Nitrogen availability in some Wisconsin forests: Comparisons of resin bags and on-site incubations. Biol. Fert. Soils 2: 77-82.
Binkley D, and Hart S C. 1989. The components of nitrogen availability assessments in forest soils. Adv. Soil Sci. 10: 57-112.
Binkley D. 1984. Ion exchange resin bags: Factors affecting estimates of nitrogen availability. Soil Sci. Soc. Am. J. 48: 1181-1184.
Bosatta E and Staaf H. 1982. The control of nitrogen turn-over in forest litter. Oikos 39: 143-151.
Ebermayer E. 1876. Die gesammte Lehre der Waldstreu, mit R?cksicht auf die chemische Statik des Waldbaues. Berlin: J. Springer.
Fogel R and Cromack K. 1977. Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Can. J. Bot. 55: 1632-1640.
Hart S C and Firestone M K. 1989. Evaluation of three in situ soil nitrogen availability assays. Can. J. For. Res. 19: 185-191.
Kaye J P, Resh S C, Kaye M W and Chimner R A. 2000. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81: 3267-3273.
Keeney D. 1980. Prediction of soil nitrogen availability in forest ecosystems: A literature review. For. Sci. 26: 159-171.
Landsberg J J, Kaufmann M R, Binkley D, Isebrands J and Jarvis P G. 1991. Evaluating progress toward closed models based on fluxes of carbon, water and nutrients. In: Kaufmann M R, Landsberg J J, eds. Advancing toward closed models of forest ecosystem. Tree Physiol. 9: 1-15.
Laskowski R, Berg B, Johansson, Maj-Britt and McClaugherty. 1995. Release pattern for potassium from decomposing forest needle and leaf litter. Long-term decomposition in a Scots pine forest. Can. J. Bot. 73: 2019-2027.
Loveless A R. 1961. A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 168-183.
Loveless A R. 1962. Further evidence to support a nutritional interpretation of sclerophylly. Ann. Bot. 26: 551-561.
Matson P A and Vitousek P M. 1981. Nitrogen mineralization and nitrification potentials following clearcutting in the Hoosier National Forest, Indiana. For. Sci. 27: 781-791.
Matson P A, Vitousek P M, Ewel J J, Mazzarino M J and Robertson G P. 1987. Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecology 68: 491-502.
Meentemeyer V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465-472.
Melillo J M, Aber J D, Linkins A E, Ricca A, Fry B and Nadelhoffer K J. 1989. Carbon and nitrogen dynamic along the decay continuum: plant litter to soil organic matter. Plant Soil 115: 189-198.
Paul E A and Clark F E. 1989. Soil microbiology and biochemistry. San Diego, Academic Press.
Powers R. 1990. Nitrogen mineralization along an attitudinal gradient: Interactions of soil, temperature, moisture, and substrate quality. For. Ecol. Manage. 30: 19-29.
Schnabel R R. 1983. Measuring nitrogen leaching with ion exchange resin: a laboratory assessment. Soil Sci. Soc. Am. J. 47: 1041-1042.
Seddon G. 1974. Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology. Biol. J. Linn. Soc. 6: 65-87.
Sibbesen E. 1977. A simple ion-exchange resin procedure for extracting plant-available elements from soil. Plant Soil 46: 665-669
Stone E L. 1979. Nutrient removals by intensive harvest-some research gaps and opportunities. In: Proceeding, impact of intensive harvesting on forest nutrient cycling. State University of New York, College of Environmental Science and Forestry, Syracuse, New York: 366-386.
Su H J. 1985. Studies on the climate and vegetation types of the natural forest in Taiwan. III. A scheme of geographical climatic regions. Q. Jour. Chin. For. 18: 33-44.
Tietema A and Wessel W W. 1994. Microbial activity and leaching during initial oak leaf litter decomposition. Biol Fert Soils. 18: 49-54.
Upadhyay V P, Singh J S and Meentemeyer V. 1989. Dynamics and weight loss of leaf litter in central Himalayan forest: abiotic versus litter quality influences. J. Ecol. 77: 147-161.
Vitousek P M and Denslow J S. 1986. Nitrogen and phosphorus availability in treefall gaps of a lowland tropical rainforest. J. Ecol. 74: 1167-1178.
Vitousek P M and Howarth R W. 1991. Nitrogen limitation on land and in the sea: How can it occur Biogeochemistry 13: 87-115.
Vitousek P M and Matson P A. 1988. Nitrogen transformations in a range of tropical forest soils. Soil Biol. Biochem. 20: 361-367.
Vitousek P M, Van Cleve, Balakrishnan N and MuellerDombois D. 1983. Soil development and nitrogen turnover in montane rainforest soils on Hawaii. Biotropica 15: 268-274.
Vitousek P M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65: 285-298.
Vitousek P M. 1982. Nutrient cycling and nutrient use efficiency. Am. Nat. 119: 553-572.
Whigham D F, Olmsted I, Cano E C and Harmon M E. 1991. The impact of hurricane Gillbert on trees, litterfall, and woodydebris in a dry tropical forest in the northeastern Yucatan Peninsula. Biotropica. 23: 434-441.
Witkamp M. 1966. Decomposition of leaf litter in relation to environment, microflora and microbial respiration. Ecology 47: 194-201.
Zou X, Valentine D W, Sanford Jr. R L and Binkley D. 1992. Resin-core and buried-bag estimate of nitrogen transformations in Costa Rican lowland rainforests. Plant Soil 139: 275-283.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75203-
dc.description.abstract本研究之進行地點位於墾丁國家公園南仁山保護區。前人的樣區調查發現,南仁山山頂與溪穀兩地植物社會在樹種組成上有很大的差異。凋落物分解袋(litter bag)、土壤埋藏袋(buried bag)及離子交換樹脂袋(ion exchange resin bag)這三種實驗技術分別可以監測凋落物養分釋出速率、土壤礦化作用(mineralization)速率、及土壤中養分提供速率(nutrient supply rate)這三個森林生態系中養份循環之重要步驟。目前普遍認為氮和磷是森林發育的重要限制因數,本研究即以上述方法來探討南仁山山頂與溪谷兩森林的有效性養分有何差異。
分解袋實驗中,溪穀與山頂的葉片凋落物交叉置於溪穀及山頂。結果以溪穀葉片凋落物在溪穀分解速率最快,半衰期為131天,山頂葉片凋落物在山頂的分解速率最慢,半衰期為185天。凋落物養分釋出速率與試驗地特性及凋落物特性皆有相關。容易因淋洗作用而釋出的鉀,在淋洗作用旺盛的山頂釋出速率亦較快;置於溪穀的葉片凋落物,氮釋出速率較快;溪穀葉片凋落物的鉀、鎂、磷釋出速率比山頂葉片凋落物快;葉片凋落物的鈣、鎂、磷釋出速率在其各自的生育地較快。由於山頂土壤有機質含量較高,平均土壤礦化作用速率比溪穀快。2000年1?4月的實驗中,山頂溪穀的無機氮、無機磷、鈣、鎂淋洗速率皆較其他時間的實驗為慢,應與雨量有關;山頂的土壤無機氮、無機磷、鈣、鎂提供速率皆比溪穀慢。凋落物養分年輸入量中,無機氮在山頂溪穀差異很小,都是約60kg ha-1 yr-1,其他養分差異較大,相差一?三倍。在土壤養分提供速率部分,山頂溪穀差距與凋落物養分年輸入量類似,無機氮在山頂與溪穀的差異也很小(23、26kg ha-1 yr-1)。山頂溪穀無機氮的流動速率差異不大,可能其他養分對植被限制影響比較大。
zh_TW
dc.description.abstractNutrient availability was studied in a lowland rain. forest on Nanjenshan Long Term Ecological Research Site in southern Taiwan. From detailed vegetation surveys, we know that the plant communities between footslope and summit on Nanjenshan are different in species composition. By using litter-bag, buried-bag, and ion-exchange-resin-bag technique, we can determine the rates of three important steps of nutrient cycling in forest ecosystem: nutrient releasing rates of litters, soil mineralization rate, and soil nutrient supply rate.
The results showed that the decomposition rates were different between leaf litters collected from footslope and summit, and it also different between litters put on footslope and summit. Their decomposition half-life ranged from 131 to 185 days. Leaf litters collected from footslope showed greater decomposition rate than from summit, and litters put on footslope had greater decomposition rate than on summit.
Nutrient releasing rates were different in site characters and in litter quality. Potassium had fastest releasing rate, and it reached a low remaining percentage earlier on summit than on footslope. Nitrogen releasing rate was faster on footslope than on summit. Leaf litters collected from footslope had greater releasing rates of potassium, magnesium, and phosphorus than those collected from summit. Leaf litters collected from both sites had faster releasing rates of calcium, magnesium, and phosphorus on their own sites. Soil mineralization was faster on summit than on footslope. Nitrogen input by leaf litter per year was about 60 kg yr-1 ha-1 on both sites. But other nutrient elements had great difference between the two sites. Soil nitrogen supply rates per year had similar trend of leaf litter input, and the difference between two sites (23, 26 kg yr-1 ha-1) was small, too. The rate of nitrogen flux showed no obvious difference as other nutrient elements, so maybe nitrogen is not the limiting element in making the two plant communities different.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:12Z (GMT). No. of bitstreams: 0
Previous issue date: 2001
en
dc.description.tableofcontents中文摘要……………………………………………………………Ⅰ
英文摘要……………………………………………………………Ⅱ
附表目次……………………………………………………………Ⅵ
附圖目次……………………………………………………………Ⅶ
前言……………………………………………………………………1
1.植物與養分的關係:養分有效性………………………………1
2.分解作用…………………………………………………………2
3.南仁山相關研究…………………………………………………4
4.研究目的…………………………………………………………5
研究區域概述…………………………………………………………6
1.地理位置…………………………………………………………6
2.氣候………………………………………………………………6
3.植生………………………………………………………………7
實驗方法……………………………………………………………13
一.實驗原理………………………………………………………13
二.凋落物分解袋實驗……………………………………………14
三.離子交換樹脂袋實驗…………………………………………16
四.土壤埋藏袋實驗………………………………………………17
五.資料分析………………………………………………………18
結果…………………………………………………………………21
一、分解袋實驗……………………………………………………21
1.葉片凋落物化學成分分析………………………………………21
2.分解曲線…………………………………………………………21
3.養分釋出…………………………………………………………24
4.凋落物養分濃度變化……………………………………………30
5.葉片分解與元素釋出……………………………………………30
6.分解速率與養分釋出速率之比較………………………………36
二、土壤埋藏袋實驗………………………………………………38
1.土壤礦化作用速率………………………………………………38
2.土壤養分含量……………………………………………………41
三、離子交換樹脂袋實驗…………………………………………45
1.時間變化…………………………………………………………45
2.試驗地差異………………………………………………………45
四、全年養分流動總量……………………………………………48
討論…………………………………………………………………50
1.葉片凋落物分解速率與養分釋出速率…………………………50
2.凋落物與鮮葉養分含量之比較…………………………………51
3.土壤礦化作用速率………………………………………………52
4.土壤養分提供速率………………………………………………53
5.全年養分流動總量………………………………………………53
6.土壤養分含量……………………………………………………54
7.離子交換樹脂袋技術……………………………………………54
8.東北季風對南仁山森林影響模式假說…………………………56
結論…………………………………………………………………58
參考文獻……………………………………………………………59
dc.language.isozh-TW
dc.title南仁山低地雨林凋落物分解及有效性養分之研究zh_TW
dc.titleLitter Decomposition and Nutrient Availability in a Lowland Rain Forest of Nanjenshanen
dc.date.schoolyear89-2
dc.description.degree碩士
dc.relation.page63
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved