Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.authorKuei-Shu Tungen
dc.contributor.author董桂書zh_TW
dc.date.accessioned2021-07-01T08:12:09Z-
dc.date.available2021-07-01T08:12:09Z-
dc.date.issued2001
dc.identifier.citationBailis, J.M., and G.S. Roeder. 2000. Pachytene exit controlled by reversal of Mek 1-dependent phosphorylation. Cell 101: 211-221.
Bishop, D.K., D. Park, L. Xu and N. Kleckner. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69: 439-456.
Casanova, J.E., P.P. Breitfeld, S.A. Ross and K.E. Mostov. 1990. Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science 248: 742-745.
Chu, S. and I. Herskowitz. 1998. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1: 685-696.
Chu, S., J. DeRisi, M. Eisen, J. Mulholland, D. Bostein, P.O. Brown and I. Herskowitz. 1998. The transcriptional program of sporulation in budding yeast. Science 282: 699-705.
Edelmann, W., P.E. Cohen, M. Kane. K. Lau, B. Morrow, S. Bennett, A. Umar, T. Kunkel, G. Cattoretti, R. Chaganti, J.W. Pollard, R.D. Kolodner and R. Kucherlapati. 1996. Meiotic pachytene arrest in MLH1-deficient mice. Cell 85: 1125-1134.
Gartner, A., S. Milstein, S. Ahmed, J. Hodgkin and M.O. Hengartner. 2000. A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell 5: 435-443.
Ghabrial, A. and T. Sch?pbach. 1999. Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nature Cell Biol. 1:354-357.
Gonzalez, G.A. and M.R. Montminy. 1989. Cyclic AMP stimulates somatostain gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675-680.
Hartwell, L.H. and T.A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 249: 629-634.
Hepworth, S.R., H. Friesen and J. Segall. 1998. NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 5750-5761.
Huang, W. and R.L. Erikson. 1994. Constitutive activation of Mekl by mutation of serine phosphorylation sites. Proc. Natl. Acad. Sci. 91: 8960-8963.
Hunter T. and M. Karin. 1992. The regulation of transcription by phosphorylation. Cell 70:375-387.
Hurley, J.H., A.M. Dean, J.L. Sohl, D.E. Koshland and JR., R.M. Stroud. 1990. Regulation of an enzyme by phosphorylation at the active site. Science 249:1012-1016.
Ito, H., Y. Fukada, K. Murata and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163-168.
Jackson, S.P. 1992. Regulating transcription factor activity by phosphorylation. Trends Cell Biol. 2:104-108.
Kaffman, A., I. Herskowitz, R. Tjian and E.K. O’Shea. 1994. Phosphorylation of the transcription factor Pho4 by a cyclin-CDK complex, Pho8O-Pho85. Science 263: 1153-1156.
Karin M. and T. Hunter. 1995. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr. Biol. 5:747-757.
Kawakami, S., H.S. Padgett, D. Hosokawa, Y. Okada, R.N. Beachy and Y. Watanabe. 1999. Phosphorylation and/or presence of serine 37 in the movement protein of tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo. J. of Virol. 73: 6831-6840.
Kemp, B.E. and R.B. Pearson. 1990. Protein kinase recognition sequence motifs. Trends Biol. Sci. 15:342-346.
Klose, K.E., D.S. Weiss and S. Kustu. 1993. Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates the protein. J. Mol. Biol. 232:67-78.
Komeili, A. and E.K. O’Shea. 1999. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284:977-980.
LeMaire-Adkins, R., K. Radke and P.A. Hunt. 1997. Lack of checkpoint at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol. 139:16 11-1619.
Li, X. and R.B. Nicklas. 1995. Mitotic forces control a cell-cycle checkpoint. Nature 373: 630-632.
L?scher, B., E. Christenson, D.W. Litchfield, E.G. Krebs and R.N. Eisenman. 1990. Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature 344:517-522.
Lydall, D., Y. Nikolsky, D.K. Bishop and T. Weinert. 1996. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383:840-843.
Moll, T., G. Tebb, U. Surana, H. Robitsch and K. Nasmyth. 1991. The role of phosphorylation and the Cdc28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor Swi5. Cell 66: 743-758.
Murakami, H. and P. Nurse. 1999. Meiotic DNA replication checkpoint control in fission yeast. Genes Dev. 13:2581-2593.
Pearson, R.B. and B.E. Kemp. 1991. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 200:62-81.
Pittman, D.L., J. Cobb, K.J. Schimenti, L.A. Wilson, D.M. Cooper, E. Brignull, M.A. Handel and J.C. Schimenti. 1998. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell1:697-705.
Potter, L.R. and T. Hunter. 1999. A constitutively “phosphorylated” guanylyl cyclase-linked atrial natriuretic peptide receptor mutant is resistant to desensitization. Mol. Biol. Cell 10:1811-1820.
Rasmussen, C. and G. Rasmussen. 1994. Inhibition of G2/M progression in Schizosaccharomyces pombe by a mutant calmodulin kinase II with constitutive activity. Mol. Biol Cell 5:785-795.
Rockmill, B. and G.S. Roeder. 1990. Meiosis in asynaptic yeast. Genetics 126, 563-574.
Rockmill, B., M. Sym, H. Scherthan and G.S. Roeder. 1995. Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 9:2684-2695.
Roeder, G.S. 1997. Meiotic chromosome: it takes two to tango. Genes Dev. 11:2600-2621.
Roeder, G.S. and J.M. Bailis. 2000. The pachytene checkpoint. Trends Genet 16:359-403.
Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular cloning. Cold Spring Harbor Laboratory, New York.
San-Segundo, P.A. and G.S. Roeder. 1999. Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97:313-324.
Sherman, F., G.R. Fink and J.B. Hicks. 1986. Methods in Yeast genetics: a Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).
Shuster, E.O. and B. Byers. 1989. Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae. Genetics 123:29-43.
Sikorski, R.S. and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
Song, D., J.W. Dolan, Y.L. Yuan and S. Fields. 1991. Pheromone-dependent phosphorylation of the yeast Ste12 protein correlates with transcriptional activation. Genes Dev. 5:741-750.
Stuart, D. and Wittenberg, C. 1998. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev. 12:2698-2710.
Sym, M., J.A. Engebrecht and G.S. Roeder. 1993. Zipl is synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72: 365-378.
Takanami, T., S. Sato, T. Ishihara, I. Katsura, H. Takahashi and A. Higashitani. 1998. Characterization of a Caenorhabditis elegans recA-like gene Ce-rdh-1 involved in meiotic recombination. DNA Res. 5:373-377.
Thorsness, P.E. and D.E. Koshland, Jr. 1987. Inactivation of Isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of phosphate. J. Biol. Chem. 262:10422-10425.
Tung, K.-S., E.J. Erica Hong and G.S. Roeder. 2000. The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. Proc. Nat. Acad. Sci. 97:12187-12192.
Weber, L. and B. Byers. 1992. A RAD9-dependent checkpoint blocks meiosis of cdc13 yeast cells. Genetics 131:55-63.
Xu, L., M. Ajimura, R. Padmore, C. Klein and N. Kleckner. 1995. NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:6572-6581.
Xu, L., B.M. Weiner and N. Kleckner. 1997. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 11:106-118.
Zhang, B., J.M. Tavare, L. Ellis and R.A. Roth. 1991. The regulatory role of known tyrosine autophosphorylation sites of the insulin receptor kinase domain. J. Biol. Chem. 266: 990-996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75188-
dc.description.abstractNdt80蛋白為酵母菌Saccharomyces cerevisiae減數分裂特定表現的轉錄因數,能夠誘導減數分裂中、後期基因的表現。Ndt80的多重磷酸化與其活性有密切的相關,可能是決定其活性的關鍵,而Ndt80的磷酸化則可能是粗絲期檢控機制的重要作用點。本論文主要探討Ndi80的功能調控與磷酸化之問的關係。首先利用定點突變的方式將Ndt80上可能的磷酸化胺基酸改變,構築一系列的ndt80特定突變株後,進一步對這些突變株進行產孢效能、孢子存活率以及蛋白質磷酸化的分析。我們發現Ndt80-T318A與Ndt80-Y216A蛋白呈現磷酸化嚴重缺失而且完全不會產生孢子,推測T318和Y216為Ndt80的兩個主要之磷酸化位置。而在其他蛋白質已經證實以負電荷的胺基酸取代磷酸化胺基酸具有模擬磷酸化的效應,令人意外的是T318D與T318E並不能持續表現Ndt80的活性;不過,由免疫螢光分析的結果發現,Ndt80-T318D與Ndt80-T318E蛋白位於細胞核內,但是Ndt80-T318A則和粗絲期中止細胞中之未磷酸化正常的Ndt80蛋白一樣,分佈在細胞質中。由此結果推測T318的磷酸化可能控制了Ndi80的細胞核輸入。另外,我們過量表現ndt80突變株,分析Ndt80的磷酸化與隱抑粗絲期中止突變株zipl缺失能力之問的關係,整體而言,ndt80突變株產孢功能與隱抑zipl缺失的功能呈現正相關的關係。此外,我們亦構築ndt80片段缺失突變株,希望藉此定出Ndt80上的功能區域,作為日後進一步研究Ndt80功能的基礎工作。zh_TW
dc.description.abstractIn yeast, Saccharomyces cerevisiae, the NDT80 gene encodes a meiosis-specific transcriptional activator that regulates the expression of middle- and late-sporulation genes. Ndt8O is phosphorylated and the phosphorylation may be a major target of the pachytene checkpoint. This thesis is to further study the functions of Ndt80 and the regulation of Ndt80 activity by phosphorylation. We generated a series of point mutations at potential phosphorylation sites on Ndt80 and tested for their effects on sporulation, spore viability and phosphorylation. We found that residue T318 and Y216 are two important phosphorylation sites on Ndt80. The ndt80-T318A and ndt80-Y216A mutations display phosphorylation defects and eliminate the ability of sporulation. In several other proteins, it has been shown that substitutions of phosphorylated residues with negatively charged amino acids could mimic the phosphorylation state of the protein. Unexpectedly, changes of T318→D and T318→E cause sporulation defect instead of making Ndt80 constitutively active. However, Ndt80-T318D and Ndt80-T318E protein localize to nuclei, while Ndt80-T318A, as well as Ndt80 in pachytene-arrested cells, stay in the cytoplasm. These results suggest that phosphorylation at T318 might control nuclear import of the Ndt80 protein. We also tested the ability of suppressing zipl defects in sporulation by overexpression of these ndt80 mutant alleles. In general, the suppression of zipl in sporulation is correlated with the sporulation ability of each ndt80 mutants. In addition, we constructed several in-frame-deletion mutations and tried to define the functional domains of Ndt80.en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:09Z (GMT). No. of bitstreams: 0
Previous issue date: 2001
en
dc.description.tableofcontents中文摘要…………………i
英文摘要…………………ii
目錄…………………iii
圖目錄…………………vi
表目錄…………………vii
縮寫對照表…………………viii
第一章、 前言…………………1
一、減數分裂的重要性…………………1
二、減數分裂細胞週期的調控…………………2
1.粗絲期檢控點…………………3
2.減數分裂其他檢控點…………………4
三、NDT80基因…………………5
1. Ndt80蛋白的功能…………………5
2. Ndt80蛋白的磷酸化…………………6
四、研究目的…………………7
第二章、材料與方法…………………8
一、菌種、培養基及一般遺傳操作…………………8
1. 酵母菌品系…………………8
2. 菌種、培養基…………………8
3. 一般遺傳操作…………………9
二、DNA製備…………………12
1.一般操作…………………12
2.磷酸化定點突變…………………16
3.片段缺失分析…………………19
三、蛋白質分析…………………21
1.蛋白質的萃取…………………21
2.蛋白質的定量…………………23
3.蛋白質電泳分析…………………23
4.蛋白質免疫轉印分析…………………27
四、細胞分析…………………28
1.細胞免疫螢光定位…………………28
2.細胞核分裂分析…………………31
3.影像分析…………………32
第三章、結果…………………33
一、Ndt80磷酸化與產孢分析…………………33
1.T318為Ndt80可能的磷酸化胺基酸…………………33
2.YZ16為另一個Ndt80上可能的磷酸化胺基酸…………………40
二、T318的磷酸化與Ndt80輸入細胞核之調控…………………41
1.T318D與T318E突變無法完成減數分裂…………………41
2.T318A與T318D突變使細胞中止在減數分裂I之前…………………42
3.T318的磷酸化影響Ndi80的細胞核輸入…………………44
三、隱抑機制…………………47
四、片段缺失分析…………………49
第四章、討論…………………52
一、Ndt80的適當磷酸化影響其功能…………………52
二、T318D與T318E無法取代T318正常磷酸化…………………54
三、T318的磷酸化與Ndt80的細胞核輸入…………………55
四、Ndt80磷酸化的調控…………………57
五、Ndt80功能區域的界定…………………59
參考文獻…………………60
附錄一…………………66
附錄二…………………68
附錄三…………………70
dc.language.isozh-TW
dc.titleNdt80 蛋白質磷酸化與其功能之關係zh_TW
dc.titleRelationship between Ndt80 phosporylation and its functionen
dc.date.schoolyear89-2
dc.description.degree碩士
dc.relation.page71
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved