Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75097
完整後設資料紀錄
DC 欄位值語言
dc.contributor.authorYann-Jium Leeen
dc.contributor.author李彥君zh_TW
dc.date.accessioned2021-07-01T08:11:48Z-
dc.date.available2021-07-01T08:11:48Z-
dc.date.issued2000
dc.identifier.citation丘臺生.(1999). 台灣的仔稚魚. 海生館籌備處.高雄.22-37.
丘臺生.(1999).台灣東北水域日本鯷仔魚春、秋群之差異. 行政院國科會報告.
沈世傑.(1993). 台灣魚類誌(Fishes of Taiwan). 台大動物系.台灣. 126-127.
高翠萍.(1992).台灣?主要紫科魚類(日本紫、異葉銀帶鰶、刺銀帶鰶)種間及種內關係之研究. 國立台灣大學漁業科學研究所碩士論文.
陳兼善.(1986). 臺灣脊椎動物誌. 臺灣商務印書館.台灣.173-276.

遊博婷.(1994). 臺灣西部中區吻嶢漁業的資源特性. 國立台灣大學漁業科學研究所碩士論文.
黃俊邠.(1998). 台灣東北海域不同水?對富浮游魚類的影響. 國立台灣大學動物學研究所博士論文.
彭優慧.(1998).台灣小家鼠的系群分化與基因交流-微隨體DNA之應用. 國立台灣大學動物學研究所碩士論文.
楊樹森.(1994).宜蘭灣日本鯷之漁業生物學. 國立台灣大學動物學研究所博士論文.
廖郁英.(1999).半穴居短尾鼩的微隨體基因座及其親族關係. 國立台灣大學動物學研究所碩士論文.
儲瑞華.(1998). 柴山台灣獼猴成年雌猴的親緣、階級與社會行?.國立台灣大學動物學研究所碩士論文.
Blouin M. S., Parsons M., Lacaille V. and Lotz S. (1996). Use of microsatellite loci to classify individuals by relatedness. Molecular Ecology. 5:393-401.
Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Mich E., Kidd J. R. and Cavalli-Sforza L. L. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455-457.
Chang K. H. and Lee S. C. (1970). Studies on the feeding habits of spotted mackerel (Scomber australasicus) found in the waters of Taiwan. Bull In Zool Academia Sinica 10:47-57.
Chen T. S. (1980). Study and investigation of Bull-ard and anchovy fisheries in coastal waters of Taiwan. Bull Taiwan Fish Res Inst 32:219-223.
Condrey M. J. and Bentzen P. (1998). Characterization of coastal cutthroat trout (Oncorhynchus clarki clarki) microsatellites and their conservation in other salmonids. Molecular Ecology 7:783-792.
Cornuet J. M., Luikart G. (1997). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001-2014.
Di Rienzo A., Peterson A. C., Garza J.C., Valdes A. M., Slatkin M. and Freimer N. B. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci 91:3166-3170.
Estoup A., Garnery L., Solignac M. and Cornuet J. M. (1995). Microsatellite variation in honey bee (Apis Mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140:679-695.
Estoup A., Rousset F., Michalakis Y., Cornuet J. M., Adriarnanga M. and Guyomard R. (1998). Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Molecular Ecology 7:339-353.
Goldstein D. B., Linares A. R., Cavalli-Sforza L. L. and Feldman M. W. (1995). An evaluation of genetic distances for use with microsatelite loci. Genetics 139:463-471.
Ramada H. and Kakunaga T. (1982). Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298:396-398.
Hamada H., Petrino M. G. and Kakunaga T. (1982). A novel repeated element with Z-DNA-
forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci 79:6465-6469.
Hartal D. L. (1988). A primer ofpopulation genetics. Sinauer Associates, Inc. USA. 23-24.
Hirakawa K. and Ogawa Y. (1996). Characteristics of the copepod assemblage in the southwestern Japan Sea and its implication for anchovy population dynamics. Bull Japan Sea Natl Fish Res Inst 46:45-64.
Hirakawa K, Goto T and Hirai M. (1997). Diet composition and prey size of larval anchovy, Engraulis japonicus, in Toyama Bay, southern Japan Sea. Bull Japan Sea Natl Fish Res Inst 47:67-78.
Howe C. (1995). Gene cloning and manipulation. Cambridge University. USA and Australia. 105-107.
Hughes C. R. and Queller D. C. (1993). Detection of highly polymorphic mocrosatellite loci in a species with little allozyme polymorphism. Molecular Ecology 2:131-137.
Iguchi N. and Tsujmoto R. (1997). Seasonal changes in the copepod assemblage as food for larval anchovy in Toyama Bay, southern Japan Sea. Bull Japan Sea Nail Fish Res Inst 47:79-94.
Jarne P. and Lagoda P. J. L. (1996). Microsatellites, from molecules to populations and back. Tree 11:424-429.
Kinner M. W., Banana H. S., Sved J. A. and Frommer M. (1998). Polymorphic microsatellite markers for population analysis of a tephritid pest species, Bacirocera tryoni. Molecular Ecology 7:1489-1495.
Lehninger A. L., Nelson D. L. and Cox M. M. (1993). Principles of Biochemistry. Worth Publishers, Inc. America. 337-338.
Nei M. (1978). Estimation of average heterozygosity and genetic distance from a small number of idividuals. Genetic 89:583-590.
O’Connell M., Dillon M. C. and Wright J. M. (1998). Development of primers for polymorphic microsatellite loci in the Pacific herring. Molecular Ecology 7:357-363.
O’Reilly P. and Wright J. M. (1995). The evolving technology of DNA fingerprinting and its application to fisheries an aquaculture. Journal of Fish Biology 47:29-55.
Olsen J. B., Bentzen P. and Seeb J. E. (1998). Characterization of seven microsatellite loci derived from pink salmon. Molecular Ecology 7:1083-1090.
Piertney B. S., Goostry A., Dalls J. F. and Carss D. N. (1998). Highly polymorphic microsatellite markers in the great cormorant Phalacrocorax carba. Molecular Ecology 7:133-140.
Plounevez S. and Champalbert G. (1999). Feeding behaviour and trophic environment of Engraulis encrasicolus (L.) in the Bay of Biscay. Estuarine, Coastal and Shelf Science 49:177-191.
Queller D. C. and Goodnight K. F. (1989). Estimating relatedness using genetic markers. Evolution 43:258-275.
Raymond M.and Rousset F. (1995). GENEPOP (ver 1.2): Population genetics software for exact tests and ecumenicism. The Journal of Hererdily 86:248-249.
Rousset F. and Raymond M. (1995). Testing heterozygote excess and deficiency. Genetics 140:1413-1419.
Schaffner W., Kunz G., Daetwyler H., Telford J., Smith H. O. and Birnstiel M. L. (1978). Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing. Cell 14:655-671.
Schl?tterer C. and Tautz D. (1992). Slippage synthesis of simple sequence DNA. Nucleic Acids Research 20:211-215.
Shen S. C. (1969). Comparative study of the gill structure and feeding habits of the anchovy, Engraulis japonica (Hout). Bull Inst Zool Academia Sinica 8:21-35.
Slatkin M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457-462.
Sures I., Lowry J. and Kedes L. H. (1978). The DNA sequence of sea urchin (S. purpuratus) H2A, H2B and H3 histone coding and spacer regions. Cell 15:1033-1044.
Takenaka O., Takasaki H., Kawamoto S., Arakawa M. and Takenaka A. (1993). Polymorphic microsatellite DNA amplification customized for chimpanzee paternity testing. Primate 34:27-35.
Tautz D. and Renz M. (1984). Simple DNA sequences of Drosophila virilis isolated by screening with RNA. J Mol Biol 172:299-235.
Tautz D. and Renz M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 12:4127-4138.
Taylor A. C., Sherwin W. B. and Wayne R. K. (1994). Genetic variation of microsatellite loci in a bottlenecked species: the northern hairy-nosed wombat Lasiorhinus krefftii. Molecular Ecology 3:277-290.
Taylor E. B. (1998). Microsatellites isolated from the threespine stickleback Gasterosteus aculeatus. Molecular Ecology 7:925-931.
Valdes A. M., Slatkin M. and Freimer N. B. (1993). Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737-749.
Wang A. H. J., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G. and Rich A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680-686.
Weber J. L. (1990). Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7:524-530.
Weir B. S. and Cockerham C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38:1358-1370.
Weissenbach J., Gyapay G., Dib C., Vignal A., Morissette J., Millasseau P., Vaysseix G. and Lathrop M. (1992). A second-generation linkage map of the human genome. Nature 395:794-801.
Wenburg J. K., Bentzen P. and Foote C. J. (1998). Microsatellite analysis of genetic population structure in an endangered salmonid: the coastal cutthroat trout (Oncorhynchus clarki clarki). Molecular Ecology 7:733-749.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75097-
dc.description.abstract日本鯷(Engraulis japonica)為一經濟性魚種,廣泛分佈於北太平洋西岸的溫帶至熱帶間。成魚於春季時會洄游至台灣東北海域,以及台灣海峽大部份海域。本研究即以日本鯷為對象,進行微隨體基因座的選殖工作,並以所選殖出的7個具高度多型性的微隨體基因座作為遺傳標記,針對3個不同時空的日本鯷樣本巡行系群判別。
以(AC)10、(TC)10、(CAC)5CA、CT(ATCT)6、(TGTA)6TG、CT(CCT)5等6種探針,針對2400個菌株進行雜合反膺,一共篩選出31個重複單元次數大於5的微隨體基因座其中包括三種額外的基因座,和一些複合式的基因座。其中成功設計引子者有26個。經測試後發現此26個基因座皆呈多型性,其中有7對具有高度的多型性,而且解析效果良好。
在族群狀態方面,日本鯷其3組樣本皆顯著地偏離哈溫平衡,並且有異型合子不足的現象。固定指數和遺傳距離兩個參數皆顯示宜蘭和澎湖的兩個族群的差別,在統計上並不顯著。於相關性的檢測上,對偶基因共用度MXY值的敏感度高於親緣關係度RXY值,MXY值為基礎所畫出的樹狀圖中有較高比例的宜蘭灣族群被包含於一群中。可能暗示了宜蘭灣日本鯷秋季系群的存在。而兩種微隨體基因座演化模式的套用,具現有的數據,並不能明確的指出何種模式適用於日本鯷,但是基因座EJ41.1同時棄卻兩種突燮模式(IAM,TPM),可能是由於此基因座本身結構上的因素,不能以TPM解釋,但是不符合IAM的原因仍有待商榷。
日本鯷是否有先混群再分別徊遊至台灣東、西北海域;宜兩灣族群是否有秋季群的存在,則仍須進一步的實驗及分析。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-07-01T08:11:48Z (GMT). No. of bitstreams: 0
Previous issue date: 2000
en
dc.description.tableofcontents致謝……………………………………………………………………………………………………………………I
摘要……………………………………………………………………………………………………………………II
目錄……………………………………………………………………………………………………………………III
壹、前言……………………………………………………………………………………………………………………1
1 研究動物簡介…………………………………………………………………………………………………………………1
2 微隨體基因座………………………………………………………………………………………………………………4
2.1 微隨體的發現…………………………………………………………………………………………………………4
2.2 微隨體基因座和其類型…………………………………………………………………………………………………5
2.3 微隨體基因座的特點……………………………………………………………………………………………………6
2.3.1 豐富性輿分佈……………………………………………………………………………………………………6
2.3.2 多型性(Polymorphism)…………………………………………………………………………………………6
2.3.3 共顯性遺傳(Codominance)………………………………………………………………………………………7
2.3.4 序列長度及偵測…………………………………………………………………………………………………7
2.4 微隨體基因座的演化……………………………………………………………………………………………………7
貳、實驗材料輿方法……………………………………………………………………………………………………………9
1 標本取得……………………………………………………………………………………………………………………9
2 選殖微隨體基因座9
2.1 萃取高分子量基因組DNA………………………………………………………………………………………………9
2.2 製備接合體DNA………………………………………………………………………………………………9
2.3 接合反應(Ligation)………………………………………………………………………………………………10
2.4 製備勝任細胞(Competentcell)……………………………………………………………………………………10
2.5 轉型(Transformation)和藍白篩選…………………………………………………………………………………10
2.6 聚合?連鎖反應檢查接合作用………………………………………………………………………………………11
2.7 製備探針………………………………………………………………………………………………11
2.8 轉漬(Blotting)………………………………………………………………………………………………12
2.9 雜合(Hybridization)、引子設計…………………………………………………………………………………12
3 篩選多型性的微隨體基因座………………………………………………………………………………………………13
3.l 萃取標本DNA………………………………………………………………………………………………13
3.2 聚合?連鎖反應………………………………………………………………………………………………13
4 判讀對偶基因……………………………………………………………………………………………………………14
4.1 製備放射性引子………………………………………………………………………………………………14
4.2 放射性聚合?連鎖反應…………………………………………………………………………………………14
4.3 定序膠體雷泳(Sequencing gel electriophoresis)………………………………………………………14
5 資料分析………………………………………………………………………………………………………………15
5.1 遺傳變異(Geneticvariation)…………………………………………………………………………………15
5.2 檢測哈溫平衡(Hardy-Weinbergequilibrium)………………………………………………………………15
5.3 共祖係數(Coancestry,θ)遺傳距離(Genetic distance)…………………………………………………16
5.4 以階梯式突變模式(Step-wisemutationmodel,簡稱SMM)灣依據的系群距離指敷………………………17
5.5 測驗突變模式………………………………………………………………………………………………18
5.6 估計相關性(Relatedness)…………………………………………………………………………………………18
5.6.1 親緣關係度(RXY)………………………………………………………………………………………………18
5.6.1 對偶基因共用度(MXY)…………………………………………………………………………………………19
參、結果……………………………………………………………………………………………………………………20
1 日本鯷的微隨體基因座………………………………………………………………………………………………20
1.1 微隨體基因座的特性………………………………………………………………………………………………20
1.2 多型性的微隨體基因座………………………………………………………………………………………………20
1.3 多型性微隨體基因座對偶基因的特性………………………………………………………………………………20
1.4 遺傳變異………………………………………………………………………………………………21
2 日本鯷的族群狀態………………………………………………………………………………………………21
2.1 哈溫平衡………………………………………………………………………………………………21
2.2 對偶基因分佈………………………………………………………………………………………………22
2.3 系群分化指標一固定指數…………………………………………………………………………………………22
2.4 遺傳距離………………………………………………………………………………………………22
2.5 突變模式的套用………………………………………………………………………………………………23
2.6 相關性………………………………………………………………………………………………23
肆、討論………………………………………………………………………………………………24
1 多型性的日本鯷基因座………………………………………………………………………………………………24
2 日本鯷的族群狀態………………………………………………………………………………………………25
2.1 哈溫平衡………………………………………………………………………………………………25
2.2 固定指數和遺傳距離………………………………………………………………………………………………26
2.3 對偶基因分佈………………………………………………………………………………………………26
2.4 突變模式的套用………………………………………………………………………………………………27
2.5 相關性………………………………………………………………………………………………27
伍、參考文獻………………………………………………………………………………………………29
表………………………………………………………………………………………………35
圖………………………………………………………………………………………………42
附錄………………………………………………………………………………………………54
dc.language.isozh-TW
dc.title日本鯷的微隨體基因座及系群判別zh_TW
dc.titleMicrosatellite DNA and stock identification in Japanese anchovy(Engraulis japonica)en
dc.date.schoolyear88-2
dc.description.degree碩士
dc.relation.page58
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved