請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75066完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Te-Chih Chen | en |
| dc.contributor.author | 陳德治 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:11:40Z | - |
| dc.date.available | 2021-07-01T08:11:40Z | - |
| dc.date.issued | 1999 | |
| dc.identifier.citation | Alford, R. A. (1989). Competition between larval Rana palustris and Bufo americanus is not affected by variation in reproductive phenology. Copeia 1989(4): 993-1000. Anderson, J. D. (1972). Embryonic temperature tolerance and rate of development in some Salamanders of the genus Ambystoma. Herpetologica 28: 236-130. Beckenbach, A. T. (1976). Influence of body size and temperature on the critical oxygen tension of some Plethodontid Salamanders. Physiol. Zool. 48: 338-347. Berven, K. A. (1982). The genetic basis of altitudinal variation in the wood frog, Rana sylvatica. II. an experimental analysis of larval development. Oecologia 1982 (52): 360-369. Berven, K. A. and D. E. Gill (1983). Interpreting geographic variation in life-history traits. Amer. Zool. 23: 85-97. Berven, K. A. (1988). Factors affecting variation in reproductive traits within a population of wood frogs (Rana sylvatica). Copeia 1988 (3): 605-615. Berven, K. A. and B. G. Chadra (1988). The relationship among egg size, density and food level on larval development in the wood frog (Rana sylvatica). Oecologia 1988 (75): 67-72. Bevier, C. R. (1997). Breeding activity and chorus tenure of two neotropical Hylid frogs. Herpetologica 53(3): 297-311. Boulinier, T. and E. Danchin (1997). The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evolutionary Ecology 11: 505-517. Bradford, D. F. (1990). Incubation time and rate of embryonic development in amphibians: the influence of ovum size temperature, and reproductive mode. Physiol. Zool. 63 (3): 1157-1180. Brattstrom, B. H. (1965). Rate of thermal acclimation in the Mexican salamander Chiropterotriton. Copeia 1965 (4) 514-515. Brattstrom, B. H. (1968). Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24: 93-111. Brattstrom, B. H. (1970). Thermal acclimation in Australian amphibian. Comp. Biochem. Physiol. 35: 69-103. Brodman, R. (1995). Annual variation in breeding success of two syntopic species of Ambystoma salamanders. J. Herpetology 29(1): 111-113. Brown, H. A. (1969). The heat resistance of some anuran tadpoles (Hylidae and Pelobatidae). Copeia 1969 (1): 138-147. Bullock, T. H. (1955). Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30 311-342. Claussen, D. L. (1977). Thermal acclimation in Ambystomatid salamanders. Comp. Biochem. Physiol.58 (A): 333-340. Crawshaw, L. I., R. N. Rausch, L. P. Wollmuth and E. J. Bauer (1992). Seasonal rhythms of development and temperature selection in larval bullfrogs, Rana catesbeiana show. Physiol. Zool. 65 (2): 346-359. Cupp, P. V. (1980). Thermal tolerance of five salientian amphibians during development and metamorphosis. Herpetologica 36 (3): 234-244. Delson, J. and W. G. Whitford (1973). Critical thermal maxima in several life history stages in desert and montane populations of Ambystoma tigrinum. Herpetologic 29: 352-355. Feder, M. E. and F. H. Pough (1975). Temperature selection by The Red-backed salamander, Plethodon c. cinereus (Green) (Caudata: Plethodontidae). Comp. Biochem. Physiol. 50 (A): 91-98. Feder, M. E. (1982). Effect of developmental stage and body size on oxygen consumption of anuran larvae: a reappraisal. J. Exp. Zool. 220: 33-42. Feder, M. E. (1985). Acclimation to constant and variable temperatures in Plethodontid salamanders II. time course of acclimation to cool and warm temperatures. Herpetologica 41 (3): 241-245. Gilbert, M., R. Leclair and R. Fortin (1994). Reproduction of the northern leopard frog (Rana pipiens) in floodplain habitat in the Richelieu River, P. Quebec, Canada. J. Herpetology 28(4): 465-470. Gollmann, B. and G. Gollmann (1996). Geographic variation of larval traits in the Australian frog Geocrinia victoriana. Herpetologica 52 (2): 181-187. Gosner, K. L. (1960). A simple table for staging anuran embryos and larvae with notes on identification. Herpetologica 16 183-190. Herreid II, C. F. and S. Kinney (1967). Temperature and development of the wood frog, Rana sylvatica, in Alaska. Ecology 48 (4): 579-590. Holomuzki, J. R. (1997). Habitat-specific life-histories and foraging by stream-dwelling American toads. Herpetologica 53(4): 445-453. Hoppe, D. M. (1978). Thermal tolerance in tadpoles of the chorus frog Pseudacris triseriata. Herpetologica 34 (3): 318-321. Hutchison, V. H. (1961). Critical thermal maxima in salamanders. Physiol. Zool. 34: 92-125. Jameson, D. L., W. Taylor and J. Mountjoy (1970). Metabolic and morphological adaptation to heterogenous environments by the Pacific tree toad, Hyla regilla. Evolution 24: 75-89. Kam, Y.-C., T.-C. Chen, J.-T. Yang, F.-C. Yu and K.-M. Yu (1998a). Seasonal activity, reproduction, and diet of a riparian frog (Rana swinhoana) from a subtropical forest in Taiwan. J. Herpetology 32(3): 447-452. Kam, Y.-C., C.-F. Lin, Y.-S. Lin, and Y.-F. Tsai (1998b). Density effects of oophagous tadpoles of Chirixalus eiffingeri (Anuran: Rhacophoridae): importance of maternal brood care. Herpetologica 54. Kaplan, R. H. (1980). The implications of ovum size variability for offspring fitness and clutch size within several populations of salamanders (Ambystoma). Evolution 34 (1): 51-64. Ketola-Pipie, C. A. and B. G. Atkinson (1983). Cold- and heat-shock induction of new gene expression in cultured amphibian cells. Can. J. Biochem. Cell Biol. 61: 462-471. Koban, M., G. Graham and C. L. Prosser (1987). Induction of heat-shock protein synthesis in teleost hepatocytes: effects of acclimation temperature. Physiol. Zool.60(2): 290-296. Kuramoto, M. (1976). Adaptive significance in oxygen consumption of frog embryos in relation to the environmental temperature. Comp. Biochem. Physiol. 52 (A): 59-62. Layen, J. R. and M. A. Romano (1985). Critical thermal minima of Hyla chrysoscelis, H. cinerea. H. gratiosa and natural hybrids (H. cinerea, H. gratiosa). Herpetologica 41 (2) 216-221. Light, L. E. (1971). Breeding habits and embryonic thermal requirements of the frogs, Rana aurora aurora and Rana pretiosa pretiosa, in the Pacific northwest. Ecology 52(1): 116-124. Lillywhite, H. B. (1971). Temperature selection by the bullfrog, Rana catesbeiana. Comp. Biochem. Physiol. 40 (A) 213-227. Lucas, E. A. and W. A. Reynolds (1967). Temperature selection by amphibian larvae. Physiol. Zool. 40: 159-171. McFarland, W. N. (1955). Upper lethal temperatures in the salamander Taricba torosa as a function of acclimation. Copeia 1955 (3): 191-194. McLaren, I. A. and J. M. Cooley (1972). Temperature adaptation of embryonic development rate among frogs. Physiol. Zool. 45: 223-228. Moore, J. A. (1939). Temperature tolerance and rates of development in the eggs of amphibia. Ecology 20 (4): 459-478. Navas, C. A. (1996). Metabolic physiology, locomotor preformance, and thermal niche breadth in neotropical anurans. Physiol. Zool. 69 (6): 1481-1501. Navas, C. A. (1997). Thermal extremes at high elevations in the Andes: physiological ecology of frogs. J. Therm. Biol. 22 (6): 467-477. Noland, R. and G. R. Ultsch (1981). The roles of temperature and dissolved oxygen in microhabitat selection by the tadpoles of a frog (Rana pipiens) and a toad (Bufo terrestris). Copeia 1981 (3): 645-652. Palis, J. G. (1998). Breeding biology of the gopher frog, Rana capito, in western Florida. J. Herpetology 32(2): 217-223. Packard, G. C. and T. I. Boardman (1987). The misuse of ratios to scale physiological data that vary allometrically with body size. New Direction in Ecological Physiology: 216-239. Petranka, J. W. and D. A. G. Thomas (1995). Explosive breeding reduce egg and tadpole cannibalism in the wood frog, Rana sylvatica. Anim. Behav. 50: 731-739. Pettus, D. and G. M. Angleton (1967). Comparative reproductive biology of montane and piedmont chorus frogs. Evolution 21:500-507. Riha, V. F. and K. A. Berven (1991). An analysis of latitudinal variation in the larval development of the wood frog (Rana sylvatica). Copeia 1991 (1): 209-221. Ruibal, R. (1955). A study of altitudinal races in Rana pipiens. Evolution 9: 322-338. Salvador, A. and L. M. Carrascal (1990). Reproductive phenology and temporal patterns of mate access in mediterranean anurans. J. Herpetology 24(4): 438-441. Schmid, W. D. (1982). Survival of frogs in low temperature. Science 215: 697-698. Sivula, J. C., M. C. Mix and D. S. McKenzie (1972). Oxygen consumption of Bufo boreas boreas tadpoles during various developmental stages of metamorphosis. Herpetologica 28: 309-313. Townsend, D. S. and M. M. Stewart (1994). Reproductive ecology of the Puerto Rican frog Eleutherodactylus coqui. J. Herpetology 28(1): 34-40. Weathers, W. W. and G. K. Snyder (1977). Relation of oxygen consumption to temperature and time of day in tropical anuran amphibians. Aust. J. Zool. 25: 19-24. Whitford, W. G. (1973). The effects of temperature on respiration in the amphibia. Amer. Zool. 13: 505-512. Wilbur, H. M. (1976). Density-dependent aspects of metamorphosis in Ambystoma and Rana sylvatica. Ecology 57: 1289-1296. Wilbur, H. M. (1977). Density-dependent aspects of growth and metamorphosis in Bufo americanus. Ecology 58: 196-200. Wollmuth, L. P., L. I. Crawshaw, R. B. Forbes and D. A. Grahn (1987). Temperature selection during development in a mountane anuran species, Rana cascadae. Physiol. Zool. 60 (4): 472-480. Wollmuth, L. P. and L. I. Crawshaw (1988). The effect of development and season on temperature selection in bullfrog tadpoles. Physiol. Zool. 61 (5): 461-469. Zhao E-M and K. Adler (1993) Herpetology of China pp.152 Society for the Study of Amphibians and Reptiles Zweifel, R. G. (1977). Upper thermal tolerance of anuran embryos in relation to stage of development and breeding habits. Amer. Mus. Novitates 140: 1-64. 巫奇勳,范德安,何嘉欣,賈維元(1994).地熱穀、馬槽、鳥來及仁澤溫泉水中藻類和蝌蚪生態之研究.中華民國第三十四屆全國中小學科學展覽作品說明書. 吳清福(1997).馴化溫度及飼料脂質對台灣鏟頷魚溫度喜好、溫度耐受性及組織極性脂質之影響.國立成功大學生物學研究所碩士論文. 林德恩(1998).不同海拔梭德氏赤蛙蝌蚪耗氧量的比較.國立台灣大學動物學研究所碩士論文. 松井孝爾(1985).日本的兩生類、爬蟲類.小學館:56. 池原貞雄,與那城義春,宮城邦治,當山昌直(1984).球列島動物圖鑑陸之脊椎動物.新星圖書:238. 千石正一,需田努,松井正文,仲穀一宏(1996).日本動物大百科5—兩生類、爬蟲類、軟骨魚.平凡社:50. 楊懿如(1998).賞蛙圖鑑—台灣蛙類野外觀察指南.中華民國自然與生態攝影學會:60-61. 堀川安市(1930).溫泉中的動物.台灣博物學會會報20:387. 陳怡惠(1998).艾氏樹蛙食卵性蝌蚪的種內競爭及母蛙撫育之研究.國立彰化師範大學科學教育研究所碩士論文. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75066 | - |
| dc.description.abstract | 日本樹蛙是台灣產30種無尾目兩生類中唯一會在溫泉及一般冷水域進行生殖的種類,其生殖棲地間水溫全年差距都在10℃以上。本研究的目的在探討(一)在不同溫度環境下生殖的日本樹蛙族群是否已有差異產生,(二)日本樹蛙選擇溫泉生殖可能獲得的好處,及(三)日本樹蛙面臨溫泉的高溫環境有何適應對策。我分別從宜蘭縣仁澤溫泉及嘉義縣觸口(冷水域)採集蝌蚪回實驗室,在22、32、40℃下馴化10?12天後,測量比較二個族群(1)蝌蚪的氧氣消耗量、(2)蝌蚪的溫度耐受度,及(3)蝌蚪的成長速率。我並在野外觀察生殖行為及採集假交配中的母蛙回實驗室測量生殖特徵,比較二個族群的(4)生殖季節和(5)生殖特徵。結果顯示溫泉與冷水域的日本樹蛙族群在蝌蚪的溫度耐受度上可能已有基因遺傳上的差異;生殖季節、母蛙的生殖特徵也有顯著的差異,但只是對不同環境的適應結果;而蝌蚪的氧氣消耗量和成長速率則沒有差異。所以日本樹蛙生存在溫泉與冷水域的族群,為了適應不同的環境溫度,已有部份的的差異存在,但大致而言,二個族群仍是相同的。日本樹蛙選擇溫泉生殖的好處顯然是因為溫泉的溫度和水量均較冷水域穩定,所以生殖季節較長,母蛙可以有較多的機會產卵,有較多的子代。另外在溫泉中,蝌蚪沒有掠食和競爭壓力,可以盡量成長到最大的體型時才變態,有利於幼蛙的存活率及日後的生殖適應性。日本樹蛙對溫泉高溫低氧環境的適應可能包括蝌蚪有較高的溫度耐受度及母蛙產下較小的卵以增加卵的表面積/體積比例等策略。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:11:40Z (GMT). No. of bitstreams: 0 Previous issue date: 1999 | en |
| dc.description.tableofcontents | 致謝…………………………………………………………………………Ⅰ 摘要………………………………………………………………………Ⅱ 目錄………………………………………………………………………Ⅲ 表目錄……………………………………………………………………Ⅴ 圖目錄……………………………………………………………………Ⅵ 壹、文獻探討……………………………………………………………1 貳、前言…………………………………………………………………4 參、材料與方法…………………………………………………………7 一、實驗動物簡介………………………………………………………7 二、實驗地點描述………………………………………………………7 三、實驗內容……………………………………………………………9 (I)蝌蚪的氧氣消耗量…………………………………………………9 (II)蝌蚪的溫度耐受度………………………………………………12 (III)蝌蚪的成長情形…………………………………………………13 (IV)母蛙生殖特徵……………………………………………………13 (V)生殖季節……………………………………………………………14 (VI)氣候狀況…………………………………………………………14 (VII)蝌蚪飼養裝置……………………………………………………14 四、統計與分析…………………………………………………………15 肆、結果…………………………………………………………………17 一、生殖棲地溫度………………………………………………………17 二、氧氣消耗量…………………………………………………………17 三、溫度耐受度…………………………………………………………18 四、成長情形……………………………………………………………18 五、生殖季節……………………………………………………………19 六、雌蛙生殖特徵………………………………………………………20 伍、討論…………………………………………………………………21 一、在不同溫度環境下生殖的日本樹蛙族群是否已有差異…………21 二、日本樹蛙選擇溫泉生殖可能獲得的好處…………………………24 三、日本樹蛙面臨溫泉的高溫環境有何適應對策……………………26 陸、結論…………………………………………………………………29 柒、引用文獻……………………………………………………………31 表一?表十一……………………………………………………………40 圖一?圖九………………………………………………………………51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 日本樹蛙 | zh_TW |
| dc.subject | 氧氣消耗量 | zh_TW |
| dc.subject | 溫泉 | zh_TW |
| dc.subject | CTM | zh_TW |
| dc.subject | 生殖 | zh_TW |
| dc.subject | 溫度耐受度 | zh_TW |
| dc.subject | 溫度生理 | zh_TW |
| dc.title | 溫泉與冷水域日本樹蛙的生殖及其蝌蚪溫度生理學之比較 | zh_TW |
| dc.title | A comparative study of the reproduction and tadpole thermal physiology between the cold water and hot spring populations of Japanese buerger's frog (Buergeria japonica) | en |
| dc.date.schoolyear | 87-2 | |
| dc.description.degree | 碩士 | |
| dc.subject.keyword | 日本樹蛙,溫泉,生殖,溫度生理,氧氣消耗量,溫度耐受度,CTM, | zh_TW |
| dc.relation.page | 70 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
