請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75060完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Shu-Yu Wang | en |
| dc.contributor.author | 王淑俞 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:11:38Z | - |
| dc.date.available | 2021-07-01T08:11:38Z | - |
| dc.date.issued | 1999 | |
| dc.identifier.citation | 1.莊榮輝,蘇仲卿。(1986)蛋白質膠體電泳檢定法。電泳分離技術研討會論文。p. 69-85. 2.馬筱筠。(1995)鎘與銅對百日草葉組織原生質膜組成之影響及一些生理生化反應。國立台灣大學植物科學研究所碩士論文。 3.陳維婷。(1997)鎘在百日草植株中的分佈及對植株形態和生理的影響。國立台灣大學植物科學研究所碩士論文。 4.蔡青倩。(1993)百日草對鎘毒害的反應與其鎘結合的鑑定。國立台灣大學植物科學研究所碩士論文。 5. Barcelo, J., M. D. Vazquez and C. Poschenrieder. (1988) Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). New Physiol. 108: 37-49. 6. Bariaud, A., M. Bury, J. C. Mestre. (1985) Mechanism of Cd2+ resistance in Euglena gracilis. Physiol. Plant. 63: 382-386. 7. Bazzaz, F. A., G. L. Rolfe and R. W. Carlson. (1974) Effects of cadmium on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol. Plant. 32: 373-377. 8. Bell, C. W. and O. Biddulph. (1963) Translocation of calcium: Exchange versus mass flow. Plant Physiol. 38: 610-614. 9. Bentwood, B. J., J. Cronshaw. (1978) Cytochemical localization of adenosine triphosphatase in the phloem of Pisum sativum and its relation to the function of transfer cells. Planta 140: 111-120. 10. Blamey, F. P. C., D. C. Joyce, D. G. Edwards and C. J. Asher. (1986) Role of trichomes in sunflower tolerance to manganese toxicity. Plant Soil. 91: 171-180. 11. Bonnemain, J. L., S. Bourquin, S. Renault, C. Offler and D.G. Fisher. (1991) Transfer cells: structure and physiology, recent advances in phloem transport and assimilate compartmentation, edit by Bonnemain, J. L., S. Delrot, W. J. Lucas, J. Dainty, p.74-83. 12. Bourquin, S., J. L. Bonnemain, S. Delrot. (1990) Inhibition of loading of 14C assimilates by p-chloromercuribenzenesulfonic acid. Localization of the apoplastic pathway in Vicia faba. Plant Physiol. 92: 97-102. 13. Caeseele, L. V., B. Klingner, and M. J. Sumner. (1996) The immunolocalization of plasma membrane H+- ATPase in the transfer cell region of Brassica Napus (Brassicaceae) ovules. Am. J. Bot. 83: 1386-1390. 14. Calba, H. and B. Jaillard. (1997) Effect of aluminium on ion uptake and H+ release by maize. New Phytol. 137:607-616. 15. Cataldo, D. A., T. R. Garland and R. E. Wildung. (1981) Cadmium distribution and chemical fate in soybean plants. Plant Physiol. 68: 835-839. 16. Chaney, R. L., M. C. White and V. M. Tierhoven. (1976) Interaction of Cd and Zn in phytotoxicity to and uptake by soybean. Agron. Abstr. 68: 21. 17. Chongpraditnun, P., S. Mori and M. Chino. (1992) Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant Cell Physiol. 33(3): 239-244. 18. Cohen, C. K., T. C. Fox, D. F. Garvin and L. V. Kochian. (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol. 116: 1063-1072. 19. Cumming, J. R. and G. J. Taylor. (1990) Mechenisms of metal tolerance in plants: physiological adaptations of exclusion of metal ions from the cytoplasm. In Stress responses in plants: adaption and accumulation mechanisms. Alscher, R. G. and J. R. Cumming eds, Wiley-liss, pp.329-356. 20. Faraday, C. D. and W. W. Thomson. (1986) Structural aspects of the salt glands of the Plumbaginaceae. J. Exp. Bot. 37: 461-470. 21. Foley, R. C. and K. B. Singh. (1994) Isolation of a Vicia faba metallothionein - like gene: expression in foliar trichomes. Plant Mol. Biol. 26: 435-444. 22. Greger, M. and S. Lindberg. (1986) Effects of cadmium and EDTA on young sugar beets (Beta vulgaris). Physiol. Plant. 66: 69-74. 23. Grill, E., E. L. Winnacker and M. H. Zenk. (1985) Phytochelations: principal heavy metal-complexing peptides of higher plants. Science 230: 674-676. 24. Gunning, B. E. S. and J. S. Pate. (1969) Transfer cells plant cells with wall ingrowths, specialized in relation to short distance transport of solutes-their occurrence, structure, and development. Protoplasma 68: 107-133. 25. Gunning, B. E. S. and J. S. Pate. (1974) Transfer cells. In: Dynamic aspects of plant ultrastructure, pp. 441-480, Robards, A. W., ed. McGraw-Hill, London, New York. 26. Gunning, B. E. S. (1977) Transfer cells and their roles in transport of solutes in plants. Scientific Progress, Oxford 64: 539-568. 27. Heuillet, E., A. Moreau, S. Halpern, N. Jeanne and S. Puiseux-Dao. (1986) Cadmium binding to thiol-molecule of Dunaliella bioculata contaminated with CaCl2: electron probe microanalysis. Biol. Cell. 58: 79-86. 28. Jacoby, B. (1967) The effects of the roots on calcium ascent in bean stems. Ann. Bot. 30: 725-731. 29. Kahkonen, M. A., Pantsar, K. M. and P. K. G. Manninen. (1997) Analyzing heavy metal concentrations in the different parts of Elodea canadensis and surface sediment with PCA in two boreal lakes in southern Finland. Chemosphere. 35: 2645-2656. 30. Khan, D. H., J. G. Duckett, B. Frankland, J. B. Kirkham. (1984) An X-ray microanaly-tical study of distribution of Cd in roots of Zea mays L. J. Plant Physiol. 115: 19-28. 31. Kramer, D., V. Romheld and E. C. Landsberg. (1980) Induction of transfer cell formation by iron deficiency in the root epidermis of Helianthus annuus L. Planta 147: 335-339. 32. Kronestedt, E. C. and A. W. Robards. (1987) Sugar secretion from the nectary of Strelitzia: an ultrastructural and physiological study. Protoplasma 137: 168-182. 33. Krotz, R. M., B. P. Evangelou and G. J. Wagner. (1989) Relationships between cadmium, zinc, Cd-peptide and organic acid in tobacco suspension cells. Plant Physiol. 91: 780-787. 34. Landserg, E. C. (1986) Function of rhizodermal transfer cells in the Fe stress response mechanism of Capsicum annuum L. Plant Physiol. 82: 511-517. 35. Lee, K. C., B. A. Cunningham, G. M. Paulsen, G. H. Liang and R. B. Moore. (1976) Effect of Cd on respiration rate and activity of several enzymes in soybean seedlings. Physiol. Plant. 36: 4-6. 36. Lidon, F. C. and F. S. Henriques. (1994) Subcellular localization of copper and partial isolation of copper proteins in roots from rice plants exposed to excess copper. Aust. J. Plant Physiol. 21: 427-436. 37. Maier, K. and U. Maier. (1972) Localization of beta-glycerophosphatase and Mg++-activated adenosine triphosphatase in a moss haustorium and relation of these enzymes to the cell wall labyrinth. Protoplasma 75: 91-112. 38. Martell, E. A. (1974) Radioactivity of tobacco trichomes and insoluble cigarette smoke particles. Nature 249: 215-217. 39. Mathys, W. (1977) The role of malate, oxalate and mastard oil glucosides in the evolution of zinc resistance in herbaze plant. Physiol. Plant. 40: 130. 40. Mauseth, J. D. (1988) Plant anatomy, Benjamin/Cummings Publishing Company, pp.47-48,466, 481. 41. Maze, J. and S. C. Lin. (1975) A study of the mature megagametophyte of Stipa elmeri. Can. J. Bot. 53: 2958-2977. 42. Page, A. L., F. T. Bingham and C. Nelson. (1972) Cadmium adsorption and growth of various plant species as influenced by solution Cd concentration. J. Environ. Qual. 1: 288-291. 43. Pate, J. S. and B. E. S. Gunning. (1969) Vascular transfer cells in angiosperm leaves: A taxonomic and morphological survey. Protoplasma 68: 135-156. 44. Pate, J. S. and B. E. S. Gunning. (1972) Transfer Cell. Ann. Rev. Plant Physiol. 23: 173-196. 45. Peterson, R. L. and E. C. Yeung. (1975) Ontogeny of phloem transfer cells in Hieracium floribundum. Can. J. Bot. 53: 2745-2758. 46. Rauser, W. E. and C. A. Ackerley. (1987) Localization of cadmium in granules within differentiating and mature root cells. Can. J. Bot. 65: 643-646. 47. Salt, D. E. and G. J. Wagner. (1993) Cadmium transport across tonoplast of vesicles from oat roots---evidence for a Cd2+/H+ antiport activity. J. Bio. Chem. 268: 12297-12302. 48. Salt, D. E. and W. E. Rauser. (1995) MgATP-dependent transport of phytochelatins across tonoplast of oat roots. Plant Physiol. 107: 1293-1301. 49. Salt, D. E., R. C. Prince, I. J. Pickering and I. Raskin. (1995) Mechanisms of cadmium mobility and accumulation in Indian Mustard. Plant Physiol. 109: 1427-1433. 50. Schnepf, E. (1974) Gland cells. In: Dynamic aspects of plant ultrastructure, pp. 331-357, Robards, A. W., ed. McGraw-Hill, London, New York. 51. Sela, M., E. Tel-Or, E. Fritz and A. Hutterman. (1988) Localization and toxic effects of cadminm, copper and uranium in Azolla. Plant Physiol. 88: 30-36. 52. Somashekaraiah, B. V., K. Padmaja and A. R. K. Prasad. (1992) Phytoxicity of cadmium ions germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. Physiol. Plant. 85: 85-89. 53. Steffen, J. C. (1990) The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. 41: 553-575. 54. Tilton, V. R., L. W. Wilcox and R. G. Palmer. (1984) Postfertilization wandlabrinthe formation and function in the central cell of soybean, Glycine max (L.) Merr. (Leguminosae). Bot. Gaz. 145: 334-339. 55. Tomsett, A. B., D. A. Thurman. (1988) Molecular biology of metal tolerances in plants. Plant Cell Environ. 11: 383-394. 56. Tyler, L. D. and M. B. McBride. (1982) Influence of Ca, pH and humic acid on Cd uptake. Plant Soil. 64: 259-264. 57. Vallee, B. L. and D. D. Ulmer. (1972) Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem. 41: 91-128. 58. Vogeli-Lange, R. and G. J. Wagner. (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92: 1086-1093. 59. Wagner, G. J. (1986) Variation in cadmium accumulation potential and tissue distribution of cadmium in tobacco. Plant Physiol. 82: 274-279. 60. Wang, J., B. P. Evangelou, M. T. Nielsen and G. J. Wagner. (1991) Computer-stimulated evolution of possible mechanisms for quenching heavy metal ion activity in plant vacuoles. Plant Physiol. 97: 1154-1160. 61. Watson, L., J. S. Pate and B. E. S. Gunning. (1977) Vascular transfer cells in leaves of Leguminosae-Papilionoideae. Bot. J. Linn. Soc. 74: 123-130. 62. White, M. C., A. M. Decker and R. L. Chaney. (1981) Metal complexation in xylem fluid. III. Electrophoretic evidence. Plant Physiol. 67: 311-315. 63. Willemse, M. T. M. and R. N. Kapil. (1981) Antipodals of Gasteria verrucosa (Liliaceae) - an ultrastructural study. Acta Bot. Neerl. 30: 25-32. 64. Wimmers, L. E. and R. Turgeon. (1991) Transfer cells and solute uptake in minor vein of Pisum sativum leaves. Planta 186: 2-12. 65. Woolhouse, H.W. (1983) Toxicity and tolerance in the responses of plants to metals, in Physiological plant ecology III---responses to the chemical and biological environment (edited by O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler), Springer-Verlag Berlin Heidelberg. pp. 246-300. 66. Zhang, W. H., N. A. Walker, S. D. Tyerman and J. W. Patrick. (1997) Mechanisms of solute efflux from seed coats: whole-cell K+ currents in transfer cell protoplasts derived from coats of developing seeds of Vicia faba L. J. Exp. Bot. 48: 1565-1572. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75060 | - |
| dc.description.abstract | 百日草(Zinnia elegans)經鎘處理後,根部是第一個受到毒害的器官,其生長受到抑制,變黑且潰爛;同時鎘也會造成植株矮化、新葉黃化,且葉組織易老化的現象。鎘濃度在30μM以上時,植株生長會明顯的受到抑制。 百日草莖部(S3)木質部導管的數目經過不同濃度的鎘處理後,有起伏的變化。低濃度時(10μM)導管數量稍微減少,但之後隨著鎘濃度的上升而增加。到達60μM時,為最大值。但當鎘濃度過高時(100μM),維管束導管的數量反而下降。 鎘處理後的百日草植株,在莖部的木質部中,有轉輸細胞的產生,位於導管間薄壁細胞的位置。在根以及葉組織的木質部中,則沒有此種現象產生。在10μM低濃度的鎘處理下,木質部並沒有明顯的轉輸細胞產生。然而在30μM的鎘處理下,植株維管束內導管接觸的薄壁細胞則開始有細胞壁向內凹的情況。60μM鎘處理時,導管周邊的薄壁細胞壁內凹的情形更加明顯。但鎘濃度到達100μM時,薄壁細胞壁內凹的程度反而下降。 其他的金屬鋅、汞、鉛、銅處理百日草植株兩星期,在TEM下觀察這幾種金屬與百日草莖部S3木質部轉輸細胞誘導的情形。在硫酸鋅100μM、氯化汞100μM和硝酸鉛100μM處理的植株中,木質部皆有轉輸細胞的產生,其接鄰導管的細胞壁有向內凹的情形。但硫酸銅處理的植株,其莖部木質部的薄壁細胞,無細胞壁內凹的情形,細胞內容物少,無轉輸細胞的產生。 植物為了對抗重金屬逆境,因此產生了許多不同的同功酵素,無論是酸性磷酸酵素、超氧歧化酵素或是過氧化氫酵素,在不同濃度的鎘處理下,皆造成改變;葉蛋白質的總表現亦有所不同,尤其是60、100μM鎘濃度的處理下,更明顯的多了一種蛋白質的表現。 | zh_TW |
| dc.description.abstract | The growth of plant is inhibited obviously, when plant is exposed to cadmium above 30 μM. The symptoms of cadmium-treated Zinnia elegans are retardation of root and shoot; chlorosis of young leaves; early senescence of old leaves. The quantity of vessel elements in S3 xylem changes when Z. elegans is exposed to different concentration of cadmium. The numbers of vessel elements in S3 xylem decreases under low cadmium concentration. The numbers of vessel elements are more and more as the increase of cadmium concentration. However, if the cadmium concentration is too high, the quantity of vessel elements decreases (100 μM). Cadmium-induced xylem transfer cells are only found in xylem of stems, not in roots and leaves. They are located at parenchyma between vessel elements. The cell wall facing vessel elements of transfer cell has ingrowth. This kind of xylem transfer cells are not found in control plant. Under low cadmium concentration (10 μM), no transfer cell in xylem of stem is found. The cell wall of parenchyma ingrown, when the concentration of cadmium is up to 30 μM. The cell wall ingrowth of transfer cells is more obvious in plants exposed to 60 μM for two weeks. The degree of transfer cell ingrowth decreases as plant exposed to 100 μM. Similar induction of transfer cells are also found in xylem of plants exposed to 100 μM ZnSO4, 100 μM Pb(NO3)2 and 100 μM HgCl2 for two weeks. However, transfer cells do not be found in the plant exposed to 50 and 100 μM CuSO4. In order to resistant metal stress, plants may produce many different kinds of isozymes. The isozyme patterns of superoxide dismutase, peroxidase and acid phosphatase in leaves are altered by the duration of cadmium treatment. The expression of total protein in leaves is different in various concentration of cadmium, especially under 60 and 100 μM. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:11:38Z (GMT). No. of bitstreams: 0 Previous issue date: 1999 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………………………I 英文摘要…………………………………………………………………………II 前言………………………………………………………………………………1 材料與方法………………………………………………………………………6 (一)植物材料…………………………………………………………………6 1.栽培…………………………………………………………………………6 2.植株挑選……………………………………………………………………7 (二)重金屬處理………………………………………………………………7 1.鎘處理乾重量的變化………………………………………………………7 2.其他金屬的處理……………………………………………………………7 (三)電子顯微鏡技術…………………………………………………………8 1.樣品的固定…………………………………………………………………8 2.樣品的脫水…………………………………………………………………9 3.樣品的滲透…………………………………………………………………9 4.樣品的切片…………………………………………………………………9 5.樣品的染色…………………………………………………………………9 6.樣品的觀察…………………………………………………………………10 (四)取樣方法…………………………………………………………………10 (五)蛋白質與酵素活性的分析………………………………………………10 1.蛋白質的萃取………………………………………………………………10 2.蛋白質定量…………………………………………………………………11 3.聚丙烯醯胺膠體電泳………………………………………………………11 4.蛋白質染色…………………………………………………………………14 (1) Coomassie Brilliant Blue R-250(CBR)染色法……………………14 (2) 硝酸銀染色法………………………………………………………………15 5.過氧化酵素活性染色………………………………………………………16 6.超氧歧化酵素活性染色……………………………………………………16 7.酸性磷酸酵素活性染色……………………………………………………17 結果………………………………………………………………………………18 (一)鎘處理後百日草外部形態的變化………………………………………18 (二)不同濃度的鎘處理下百日草乾重的變化………………………………18 (三)不同濃度的鎘處理對根、莖、葉維管束的影響………………………18 (四)鎘處理的百日草莖部(S3)木質部導管發育的變化…………………19 (五)木質部轉輸細胞與正常細胞的比較……………………………………20 (六)鎘處理與百日草木質部轉輸細胞的產生位置…………………………20 (七)不同濃度的鎘處理與S3木質部轉輸細胞壁內凹程度的關係…………20 (八)各種不同重金屬處理與S3木質部轉輸細胞誘導的關係………………21 (九)不同濃度的鎘處理百日草下的葉蛋白質與同功酵素的表現…………22 討論………………………………………………………………………………46 參考文獻…………………………………………………………………………51 | |
| dc.language.iso | zh-TW | |
| dc.title | 鎘與百日草木質部轉輸細胞的誘導 | zh_TW |
| dc.title | Induction of Transfer cells by Cadmium in xylem of Zinnia elegans. | en |
| dc.date.schoolyear | 87-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 65 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
