Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75001Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.author | 盧福翊 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:11:16Z | - |
| dc.date.available | 2021-07-01T08:11:16Z | - |
| dc.date.issued | 1998 | |
| dc.identifier.citation | Alderdice, D. F. 1988. Osmotic and ionic regulation in teleost eggs and larvae. In Fish Physiology, Vol. 11 (W. S. Hoar and D. J. Randall, eds.), part A, pp.163-25l. Academic Press,.San Diego:
Armbrecht, H. J., Zenser, T. B., Gross C. J. and Davis. B. B. 1980. Adaptation to dietary calcium and phosphorus restriction changes with age in the rat. Am. J. Physiol.239:E322-E327. Ayson, F. G., Kaneko, T., Hasegawa, S. and Hirano, T. 1994. Development of Mitochondria-rich cells in the yolk-sac membrane of embryos and larvae of tilapia, Oreochromis niossambicus, in fresh water and sea water. J. Exp. Zool. 270:129-135. Baker, A. R., Mcdonnell, D. P., Hughes, M., Crisp, T. M., Mangelsdorf, D. J., Haussler, M. R., Pike, J. W, Shine, J. and O’Malley, B. W. 1988. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc. Natl. Acad. Sci. USA 85:3294-3298. Bijvelds, M. J. C., Van Der Heijden, A. J. H., Flik, G., Verbost, P. M., Kolar, Z. I. and Wendelaar Bonga, S. E. 1995. Calcium pump activities in the kidneys of Oreochromis mossambicus. J. Exp. Biol. 198:1352-1357. Bikie, D. D., Zolock, D. T., and Munson, S. 1984. Differential response of duodenal epithelial cells to 1,25-dihydroxyvitamin D3 according to position on the villus: a comparison of calcium uptake, calcium-binding protein, and alkaline phosphatase activity. Endocrinology 115: 2077-2084. Bishop, C. W., Kendrick, N. C. and Deluca, H. F. 1984. The early time course of calcium- binding protein induction by 1,25-dihydroxyvitamin D3 as determined by computer analysis of two-dimensional electrophoresis gels. J. Biol. Chem. 259: 3355-3360. Bj?rnsson, B. Th. And Nisson, S. 1985. Renal and extrarenal excretion of calcium in the marine teleost, Gadus morhua. Am. J. Physiol. 248:R18-22. Bredderman, P. J. and Wasserman, R. H. 1974. Chemical composition, affinity for calcium, and some related properties of the vitamin D-dependent calcium-binding protein. Biochemistry 13:1687-1694. Broke, J. L., Caride, A., Verma, A. K., Penniston, J. T. and Kumar, R. 1989. Plasma membrane calcium pump and 28-kDa calcium binding protein in cells of rat kidney distal tubules. Am. J. Physiol. 257(Renal Fluid Electrolyte Phsiol. 26):F842-F849. Chang, M. H., Lin, H. C. and Hwang, P. P. 1997. Effects of cadmium on the kinetics of calcium uptake in developing tilapia larvae, Oreochromis niossambicus. Fish Physiol. Biochem. 16:459-470. Corradino, R. A. 1973. 1,25-dihydroxycholecholeciferol: inhibition action in organ-cultured intestine by actinomycin D and a-amanitin. Nature, Lond. 243:41-43. Corradino, R. A., Wasserman, R. H., Pubols, M. H. and Chang, S. 1968. Vitamin D3 induction of a calcium-binding protein in the uterus of the laying hen. Arch. Biochem. Biophys. 125:378-380. Deluca, H. F. 1988. The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J. 2:224-236. Doneen, B. A. 1993. High-affinity Ca2+-Mg2+-ATPase in kidney of euryhaline Gillichihys mirabills: Kinetics, subcellcular distribution and effects of salinity. Comp. Biol. Physiol. 106B: 719-728. Elger, E., Elger, B., Hentschel, H. and Stolte, H. 1987. Adaptation of renal function to hvpotonic medium in the winter flounder (Pseudopleuronecies hericanus). J. Comp. Physiol. 157B:21-30. Fenwik, J. C. 1989. Calcium exchange across fish gills. In : Vertebrate Endocrinology: Fundamentals and Biomedical Implications, vol. 3 (P. K. T. Pang and M. P. Schreibman, eds.), Academic Press, New York, pp 319-342. Fenwick, J. C., Smith, K., Smith, J. and Flik, G. 1984. Effect of various vitamin D analogs on plasma calcium and phosphorus and intestinal calcium absorption in fed and unfed American eels, Anguilla rosirata. Gen. Comp. Endocrinol. 55:398-404. Flik, G., Fenwick,J. C., Kolar, Z., Mayer-Gostan, N. and Wendelaar Bonga, S. E. 1985a. Whole-Body calcium flux rates in cichlid teleost fish Oreochroniis mossambicus adapted to freshwater. Am. J. Physiol. 249:R432-437. Flik, G., Fenwick, J. C., Kolar, Z., Mayer-Gostan, N. and Wendelaar Bonga, S. E. 1986. Effects of low ambient calcium levels on whole-body Ca2+ flux rate and internal calcium pools in the freshwater cichlid teleost, Oreochromis niossabicus. J.Exp. Biol. 120:249-264 Flik, G., Fenwick, J. C. and Wendelaar Bonga, S. E. 1989. Calcitropic actions of prolactin in freshwater North American eel (Anguilla rosirala LeSueur). Am. J. Physiol. 249:R432-437. Flik, G., Klaren, P. H. M., Schoenmakers, Th. J. M., Bijvelds, M. J. and Wendelaar Bonga, S. E. 1996. Cellular calcium transport in fish: unique and universal mechanisms. Physiol. Zool. 69:403-417. Flik, G. and Perry, S. F. 1989. Cortisol stimulates whole body calcium uptake and the branchial calcium pump in freshwater rainbow trout. J. Membr Biol. 113:13-22. Flik, G., Verbost, M. and Wendelaar Bonga, S. E. 1995. Calcium transport processes in fishes. In: Fish Physiology. Vol. ?V, Cellular and molecular approaches to fish ionic regulation. (C. M. Wood and T. P. Mommsen, eds), Academic press, San Diego, pp.317-342. Flik, G., Reijntjens, R. M. J., Stikkelbroeck, J. and Fenwick J. C. 1982. 1,25-Vit D3 and calcium transport in the gut of tilapia (Saroiherodon mossambicus). (Abstract) J. Endocrinol 94:40P. Flik, G., Rentier-Delrue, F. and Wendelaar Bonga, S. E. 1994. Calcitropic effects of recombinant prolactins in Oreochromis mossambicus. Am.J. Physiol. 266:R1302-1308. Flik, G., Schoenamkers, Th. J. M., Groot, J. A., Van Os, C. H. and Wendelaar Bonga, S. E. 1990. Calcium absorption by fish intestine: The involvement of ATP- and sodium- dependent calcium extrusion mechanisms. J. Membr Blot. 113:13-22. Flik, G., Van Rijs, I. H. and Wendelaar Bonga, S. E. 1985b. Evidence for high-affinity Ca2+-ATPase activity and ATP-driven Ca2+-transport in membrane preparations of the gill epithelium of the cichild fish Oreochromis mossambicus. J. Exp. Biot.119:335-347. Flik, G. and Verbost, P. M. 1993. Calcium transport in fish gills and intestine. J. Exp. Biol. 184: 17-29. Flik, G., Wendelaar Bonga, S. E. and Fenwick, J. C. 1983. Ca2+-dependent phosphatase and Ca2+-dependent ATPase activity in plasma membranes of eel gill epithelium. I. Identification of Ca2+-activated ATPase activities with non-specific phosphatase activities. Comp. Biochem. Physiol. B76:745-754. Franceschi, R. T. and Deluca, H. F. 1981. The effect of inhibitors of protein and RNA synthesis on l,25-dihydroxyvitamin D3-dependent calcium uptake in cultured embryonic chick duodenum. I Biol. Chem. 256: 3848-3852. Fulimer, C. S. and Wasserman, R. H. 1987. Chicken intestinal 28-kilodalton calbindin-D:complete amino acid sequence and structural considerations. Proc. Natl. Acad. Sci. USA 84: 4772-4776. Gross, M. and Kumar, R. 1990. Physiology and biochemistry of vitamin D-dependent calicum binding proteins. Am. J. Physiol. 259:F195-209. Goss, G., Perry, S. and Laurent, P. 1997. Ultrastructural and morphometric studies on ion and acid-base transport processes in freshwater fish. In: Fish Physiology. Vol. ?V, Cellular and molecular approaches to fish ionic regulation.(C. M. Wood and T. J. Shuttleworth, eds.), Academic press, San Diego, pp257-278. Guggino, W. B. 1980. Water balance in embryos of Fundulus heteroclitus and F bermudae in seawter. Am. J. Phsiol. 238:R36-41. Hanssen, R. G. J. M., Mayer-Gostan, N., Flik, G. and Wendelaar-Bonga, S. E. 1992. Influence of ambient calcium levels on stanniocalcin secretion in the european eel (Anguilla anguilla). J. Exp. Biol. 162:197-208. Hickman, C. P. Jr. 1968. Glomerular filtration and urine flow in the euryhaline southern flounder, Paralichihys leihostigma, in seawater. Can. J. zool. 46:427-437. Hickman, C. P. Jr. and Trump, B. F. 1969. The kidney. In Fish Physiology, Vol. 1 (W. S. Hoar and D. J. Randall, eds.), Academic Press, New York, pp.91-239. Hirano, T. 1989. The corpuscles of stannius. In Veterbrate Endocrinology: Fundamentals and Biomedical implications. Vol.3 (ed. P. K. T. Pang and M. P. Schreibmann), pp 139-170. New York: Academic Press. Hunziker, W. 1986. The 28-kDa vitamin D-dependent calcium-binding protein has a six- domain structure. Proc. Natl. Acad Sci. USA 83:7578-7582. Hwang, P. P., Lin, S. W. and Lin, H. C. 1995. Different sensitivities to cadmium in tilapia larvae (Oreochrornis niossanibicus; teleost). Arch. Environ. Contam. Toxicol. 29:1-7. Hwang, P. P., Tsai, Y. N. and Tung, Y. C. 1994. Calcium balance in embryos and larvae of the freshwater-adapted teleost, Oreochromis niossanibicus. Fish Physiol. Biochem:.13 :325-333. Hwang, P. P., Tung, Y. C. and Chang, M. H. 1996. Effect of environmental calcium levels on calcium uptake in tilapia larvae (Oreochromis niossambicus). Fish Physiol. Biochem. 15:363-370. Hwang, P. P. and Yang, C. H. 1997 Modulation of calcium uptake in cadmium-pretreated tilapia (Oreochromis mossabicus) larvae. Fish Physiol. Biochem. 16:403-410. Ichii, T. and Mugiya, Y. 1983. Effects of a dietary deficiency in calcium on growth and calcium uptake from the aquatic environment in the goldfish, Carassius auratus. Comp. Biochem. Physiol. 74A:259-262. Isihara, A. and Mugiya, Y. 1987. Ultrastructual evidence of calcium uptake by chloride cells in the gills of goldfish, Carassius auratus. J. Exp. Zool. 242:121-129. Kakizawa, S., Kaneko, T., Hasegawa, S. and Hirano, T. 1993. Activation of somatolactin cells in the pituitary of the rainbow trout Oncorhynchus mykiss by low environmental calcium. Gen. Comp. Endocrinol. 91:298-306. Klaren, P. H. M., Flik, G., Wendelaar Bonga, S. E. and Perry, S. F. 1993. Ca2+ transport across intestinal brush border membranes of the cichlid teleost Qreochromis mossambicus. J. Membr. Biol. 132:157-166. Kumar, R. 1984. The metabolism of 1,25-dihydroxyvitamin D3.Physiol. Rev. 64: 478-504. Lee, T. H., Hwang, P. P., Lin, H. C. and Huang, F. L. 1996. Mitochondria-rich cells in the branchial epithelium of the teleost, Oreochromis mossambicus, acclimated to various hypotonic environments. Fish Phsio. Biochem. 15:513-523. Li, J., Eygensteyn, J., Lock, R. A. C., Verbost, P. M., Van Der Heijden, A. J. H., Wendelaar Bonga, S. E. and Flik, G. 1995. Branchial chloride cells in juveniles of freshwater tilapia Oreochromis mossanibicus. J. Exp. Biol 198:2177-2184. Lomri, N., Perret, C., Gouhier, N. and Thomasset, M. 1989. Cloning and analysis of calbindin-D28K cDNA and its expression in the central nervous system. Gene 80:87-98. Mayer-Gostan, N. and Naon, R. 1992. Effects of ambient ion concentrations on gill ATPase in freshwater eel, Angulla anguilla. Fish Phsiol. Biochem. 10:75-89. McCormick, S. D., Hasegawa., S. and Hirano, T. 1992. Calcium uptake in the skin of a freshwater teleost. Proc. Natl. Acad. Sci. USA 89:3635-3638. Minghetti, P. P., Cancela, L., Fajisawa, Y., Theofan, G. and Norman, A. W. 1988. Molecular structure of the chicken vitamin D-induced calbindin-D28K gene reveals eleven exons, six Ca2+-binding domains, and numerous promoter regulatory elements. Mol. Endocrinol. 2:355-376. Oikari, A. O. J. and Rankin, J. C. 1985. Renal excretion of magnesium in a freshwater teleost, Salmo gairdneri. J. Exp. Biol. 117:319-333. Parmentier, M., Lawson, D. E. M. and Vassart, G. 1987. Human 27-kDa calbindin complementary DNA sequence. Evolutionary and functional implications. Eur. J. Biochem. 170:207-215. Parry, G. 1966. Osmotic adapatation in fishes. Biol. Rev 41:392-444. Perry, S. F. and Flik, G. 1988. Chacterization of branchial transepithelial calcium fluxes in freshwater trout, Salmo gairdneri. Am. J. Physiol. 254:R491-498. Perry, S. F., Goss, G. G. and Fenwick, J. C. 1992. Interrelationships between gill chloride cells morphology and calcium uptake in freshwater teleosts. Fish Physiol Biochem.10:327-337. Perry, S. F. and Wood, C. M. 1985. Kinetics of branchial calcium uptake in the rainbow trout: effects of acclimation to various external calcium levels. J. Exp. Biol.116:411-433. Piiper, J. and Scheid, P. 1984. Model analysis of gas transfer in fish gills. In: Fish physiology. Vol. Ⅷ (W. S. Hoar and D. J. Randall, eds), Academic press, Orlando, pp.230-259. Pfyffer, G. E., Faivre-Bauman A., Tixier-Vidal, A., Norman A. W. and. Heizmann, C. W. 1987. Developmental and functional studies of parvalbumin and calbindin D28K in hypothalamic neurons grown in serum-free medium. J. Neurochem.. 49: 442-451. Renfro, J. L., Dickman, K. G. and Miller, D. S. 1982. Effects of Na+ and ATP on peritubular Ca transport by the marine teleost renal tubule. Am. J. Physiol. 243 :R34-41. Schmidt-Nielsen, B. and Renfro, J. L. 1975. Kidney function of the American eel Anguilla rostrata. Am. J. Physiol. 228:430-431. Schoenmakers, Th. J. M. and Flik, G. 1992. Sodium-extruding and calcium-extruding sodium/calcium exchangers display similar calcium affinities. J. Exp. Biol. 168:151-159. Schoenmakers, Th. J. M., Klaren, P. H. M., Flik, G.,Lock, R. A. C., Pang, P. K. T. and Wendelaar Bonga, S. E. Actions of cadmium on basolateral membrane proteins involved in calcium uptake by fish intestine. J. Membr Biol. 127:161-172. Schoenmakers, Th. J. M., Verbost, P. M., Flik, G. and Wendelar Bonga S. E. 1993. Transcellular intestinal calcium transport in freshwater and seawater fish and its dependence on sodium/calcium exchange. J. Exp. Biol. 176:195-206. Shultz, T. D., Boliman, S. and Kumar, R. 1982. Decreased intestinal calcium absorption in vivo and normal brush border membrane vesicle calcium uptake in cortisol-treated chickens: evidence for dissociation between calcium absorption and brush border vesicle uptake. Proc. Natl. Acad. Sci. USA 79: 3542-3546. Sundell, K. and Bj?rnsson, B. T. 1988. Kinetics of calcium fluxes across the intestinal mucosa of the marine teleost, Gadus mrohua, measured using an in vitro perfusion method. J. Exp. Biol. 140:170-186. Sundell, K and Bj?rnsson, B. T. 1990. Effects of vitamin D3, 25(OH) vitamin D3, 24,25(OH)2 vitamin D3, and 1,25(OH)2 vitamin D3 on the in vitro intestinal calcium absorption in the marine teleost, Atlantic cod Gadus morhua. Gen. Comp. Endocrinol. 78:74-79. Takagi, Y., Nakamura, Y. and Yamada, J. 1985. Effects of the removemal of corpuscles of stannius on the transport of calcium across the intestine of rainbow trout. Zool. Sci. 2:523-530. Takagi, T., Nojiri, M., Koniski, K., Maruyama, K. and Nonomura, Y. 1986. Amino acid sequence of vitamin D-dependent calcium-binding protein from bovine cerebellum. FEBS Lett. 201:41-45. Takeuchi, A., Okano, T and Kobayashi, T. 1991. The existence of 25-hydroxyvitamin D3-1 alpha-hydroxylase in the liver of carp and bastard halibut. Life Sci. 48:275-282. Taylor., A. N. 1983. Intestinal vitamin D-induced calcium-binding protein: time-course of immunocytological localization following 1,25-dihydroxyvitamin D3. J. Histochem. Cytochem. 31:426-432. Tsarbopoulos, A., Gross, M., Kumar, R. and Jardines, I. 1989. Rapid identification of calbindin-D28K cyanogen bromide peptide fragments by plasma desorption mass spectrometry. Biomed. Ei. Mass Spectr. 18:387-393. Verbost, P. M., Schoenmakers, Th. J. M., Flik, G. and Wendelaar Bonga, S. E. 1994. Kinetics of ATP- and Na+-gradient driven Ca2+ transport in basolateral membranes from gills of freshwater- and seawater- adapted tilapia. J. Exp. Biol. 186:95-108. Wendelaar Bonga, S. E. and Flik, G. 1982. Prolactin and calcium metabolism in a teleost fish. In: Comparative Endocrinology of Calcium Regulation (C. Oguro and P. K. T. Pang eds.), Japan Scientific Societies Press, Tokyo, pp. 21-26. Wasserman, R. H., Brindak, M. E., Meyer, S. F. and Fullmer, C. S. 1982. Calcium absorption and 1,25(OH)2D3: studies with rachitic and partially vitamin D-repleted chicks. In:Vitamin D Chemical, Biohcemical and Clinical Endocrinology of Calcium Metabolism (A. W. Norman, K. Achaefer, D. V. Herrath, and H. G. Grigoleit, eds),Berlin: de Gruyter, pp.275-281. Yamakuni, T., Kuwano, R., Odani, S., Miki, N., Yamaguchi, Y. and Takahashi, Y. 1986. Nucleotide sequence of cDNA to mRNA for a cerebellar Ca-binding protein, spot 35 protein (Abstract). Nucleic Acids Res. 14:6768. Zaccone, G., Wendelaar Bonga S. E. and Flik, G. 1992. Localization of calbindin D28K-like immunoreactivity in fish gill:a light microscopic and immunoelectron histochemical study. Regul. Pept. 41:195-208. Wasserman, R. H., Corradino, R. A. and Taylor, A. N. 1968. Vitamin D-dependent protein : response to some physiological and nutritional variables. J. Biol. Chem. 243:3978-3986. Yamakuni, T., Kuwano, R., Odani, S., Miki, N., Yamaguchi, Y. and Takahashi, Y. 1986. Nucleotide sequence of cDNA to mRNA for a cerebellar Ca-binding protein, spot 35 protein (Abstract). Nucleic Acids Res. 14:6768. Zaccone, G., Wendelaar Bonga S. E. and Flik, G. 1992. Localization of calbindin D28K-like immunoreactivity in fish gill:a light microscopic and immunoelectron histochemical study. Regul. Pept. 41:195-208. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75001 | - |
| dc.description.abstract | 鈣離子在仔魚發育扮演重要的角色,是生長之所需。本論文以吳郭魚仔魚在不同鈣離子濃度下探討,不同處理時間,以及不同的發育階段,鈣離子吸收機制的調節表現。 當仔魚在鈣離子濃度 0.2 mM人工水中處理時,鈣離子吸收速率在孵化後三天上升最高,配合此時期鰓的增生及功能逐漸健全,可見仔魚鰓之發育與鈣離子吸收速率增加有相當密切的關係。另外,將孵化後不同時期之吳郭魚仔魚置於低鈣環境中發現,在孵化後第三天對於低鈣環境最為敏感。推測在孵化後三天是吳郭魚仔魚大量吸收鈣而且對外界刺激最敏感的時期。 將孵化前24小時之吳郭魚受精卵以三種鈣離子濃度(高鈣[Ca2+]=2 mM,,中鈣[Ca2+]=0.2 mM,低鈣[Ca2+]=0.02 mM)處理,並在孵化後於原來處理之濃度測量鈣離子流入速率(calcium influx),低鈣組在處理初期鈣離子流入速率較高鈣組低,但在處理後期鈣離子流入率明顯上升,至於鈣含量則明顯降低,顯示以低鈣環境處理後,仔魚離子吸收能力增加是為了補償鈣含量之降低。 長期處理低鈣環境之仔魚,在處理初期孵化後24小時就已經具有調節鈣離子的能力,並隨著處理時間越長,調節能力更加上升。 經由不同抗體檢視,孵化後三天及七天之吳郭魚仔魚鰓具有類似鈣離子幫浦及鈣離子結合蛋白 calbindin-D28k之表現,孵化後零天及三天之仔魚卵黃膜也都可見到類似這些蛋白質的表現。 經由上述可知,孵化後仔魚之成長,在發育初期已經具備調節鈣離子吸收機制之能力,且隨孵化後時間增加而此能力也增加。孵化後三天是吳郭魚仔魚對外界最為敏感的時期。鈣離子幫浦及鈣離子結合蛋白 calbindin-D28k 可能參與仔魚鈣離子吸收的機制。 | zh_TW |
| dc.description.abstract | Calcium ion plays an important role for larvae development. The present study, using different calcium concentrations as environmental factors, investigated the calcium balance mechanism in developing tilapia larvae. The abilities to modulate calcium influx in larvae varied with different acclimation periods and developmental stages. In the artificial freshwater with 0.2 mM [Ca2+], tilapia larva showed the highest calcium influx rate 3 d after hatching, and this was associated with the proliferation of gills which occurred at the same time. Among different stages, 3-d-old larvae showed the highest degree of decrease in calcium influx and in calcium content upon transfer to low-calcium medium These results suggest that 3 d after hatching is the most sensitive to environmental changes. Tilapia larva was acclimated at different calcium concentration including, high calcium ([Ca2+]=2 mM), normal calcium ([Ca2+]=0.2 mM), and low calcium ([Ca2+]=0.02 mM). Calcium influx in low-calcium larvae was lower than that in high-calcium larvae during 24-96 h after hatching, but the former turned out to be higher than the latter 120 h after hatching. The calcium content in low-calcium larvae was lower than that in high-calcium larvae throughout whole experiment. These results suggest that increasing calcium influx is a compensation for decreased calcium content in the larvae adapted to low-calcium environment. Moreover, this adaptation is developed as early as 24 h after hatching, and is dose (environmental calcium concentration) related. Using Western blotting both Ca2+-ATPase-like and calbindin-D28k-like were found to express in gills and yolk-sac epithelia of tilapia larvae. 0-7 d after hatching, suggesting these transport proteins are involved in the calcium balance mechanism of developing larvae. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:11:16Z (GMT). No. of bitstreams: 0 Previous issue date: 1998 | en |
| dc.description.tableofcontents | 中文摘要.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 英文摘要. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 鰓在鈣離子調節上所扮演的角色.. . . . . . . . . . . . . . . . . . . . . . .. .. 4 腸道及腎臟等在魚類鈣離子調節上所扮演的角色.. . . . . . . . . . . . . . .. 6 環境鈣離子濃度對於魚體鈣離子平衡的影響.. . . . . . . . . . . . . . . . . . 9 鈣離子結合蛋白(calcium binding protein) calbindin-D28k 之簡介................10 胚胎與仔魚初期之離子調節.. . . . . . . . . . . . . . . . . . . . . 12 材料及方法.. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 15 材料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 孵化仔魚之取得. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .16 蓄養環境用水的配置.. . . . . . . . . . . . . . . . . . . . . . . . . . 16 實驗用水各離子濃度及仔魚鈣離子含量之測定.. . . . . . . . . . . . . . . 17 鈣離子流入速率(Ca2+ influx rate)的測定.. . . . . . . . . . . . . . . . . . 18 吳郭魚仔魚鰓及卵黃膜之取樣. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 19 西方墨點分析法(Westem blotting) . . . . . . . . . . . . . . . . . . . . . 19 實驗步驟.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 吳郭魚仔魚不同發育時期鈣離子流入速率之變化. . . . . . . . . . . . . . 20 仔魚在不同發育時期對低鈣環境短期處理之反應.. . . . . . . . .. 20 以不同鈣濃度環境長期處理對仔魚鈣離子平衡機制之影響.. . . . . . .. . 21 低鈣濃度長期處理對於仔魚鈣離子吸收程度的影響.. . . . . . 21 長期處理在不同鈣濃度環境之吳郭魚仔魚卵黃膜及鰓之鈣離子幫浦(Ca2+-ATPase)及鈣離子結合蛋白(calcium binding protein) Calbindin D28k 的表現. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 22 結果.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 吳郭魚仔魚不同發育時期之鈣離子流入速率.. . . . . . . . . . . . . . . . . . .. 23 吳郭魚仔魚在不同發育時期對於低鈣環境之立即反應(challenge) . . . 23 低鈣濃度長期處理對於仔魚鈣離子吸收程度的影響. . . . . . . 25 calbindin-D28k與Ca2+-ATPase 在吳郭魚仔魚鰓及卵黃膜上的表現 . . . . . . . . . . . . . . . . . . . 26 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 吳郭魚仔魚期鈣離子吸收與發育之關係. . . . . 27 仔魚不同發育時期對低鈣之敏感度.. . . . . . . . . . . . . . . . . . . . . . 28 吳郭魚仔魚處理在不同鈣離子濃度人工水之下的現象.. . . . . . 29 吳郭魚仔魚對於低鈣環境之適應情形.. . . . . . . . . . . . . . . 31 鈣離子幫浦(Ca2+-ATPase)及鈣離子結合蛋白 calbindin-D28k在仔魚鰓及卵黃膜之表現 . . . . . . . . . 32 結論.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 未來研究方向.. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .36 誌謝.. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 參考文獻.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 圖 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..51 | |
| dc.language.iso | zh-TW | |
| dc.title | 吳郭魚(Oreochromis mossambicus) 仔魚期鈣離子平衡之研究 | zh_TW |
| dc.title | Calcium Balance in Tilapia Larvae (Oreochromis mossambicus) | en |
| dc.date.schoolyear | 86-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 62 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| Appears in Collections: | 漁業科學研究所 | |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
