Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74993
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱時宜(Shih-I Chu)
dc.contributor.authorWei-Teng Wangen
dc.contributor.author汪為騰zh_TW
dc.date.accessioned2021-06-17T09:20:30Z-
dc.date.issued2021
dc.date.submitted2021-04-26
dc.identifier.citation1.N. H. Burnett, H. A. Baldis, M. C. Richardson, and G. D. Enright Harmonic generation in CO2 laser target interaction. Appl. Phys. Lett. 31, 172 (1977)
2.A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. JOSA B, 4(4):595-601, (1987).
3.M Ferray, A L'Huillier, X F Li, L A Lompre, G Mainfray and C Manus. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys.B, 21:L31,(1988).
4.P. B. Corkum. Plasma perspective on strong field multiphoton ionization Phys.Rev.Lett. 71, 1994, (1993).
5.J.L. Krause, K.J. Schafer and K.C. Kulander. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68 (1992) 3535.
6.Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).
7.Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
8.T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, and H. J. Wörner, “Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver,” Opt. Express 25, 27506 (2017).
9.Orfanos, I. et al. Attosecond pulse metrology. APL Photonics 4, 80901, (2019).
10.K. Midorikawa, Y. Nabekawa, and A. Suda, “XUV multiphoton processes with intense high-order harmonics,” Prog. Quantum Electron. 32, 43 (2008).
11.P. Tzallas, D. Charalambidis, N. A. Papadogiannis, K. Witte, and G. D. Tsakiris, “Direct observation of attosecond light bunching,” Nature 426, 267 (2003).
12.Y. Nabekawa, T. Shimizu, T. Okino, K. Furusawa, H. Hasegawa, K. Yamanouchi, and K. Midorikawa, “Conclusive evidence of an attosecond pulse train observed with the mode-resolved autocorrelation technique,” Phys. Rev. Lett. 96, 083901 (2006).
13.P. Tzallas, D. Charalambidis, N. A. Papadogiannis, K. Witte, and G. D. Tsakiris, “Second-order autocorrelation measurements of attosecond XUV pulse trains,” J. Mod. Opt. 52, 321 (2005).
14.P. Tzallas, E. Skantzakis, L. A. A. Nikolopoulos, G. D. Tsakiris, and D. Charalambidis, “Extreme-ultraviolet pump–probe studies of one-femtosecondscale electron dynamics,” Nat. Phys. 7, 781 (2011).
15.T. Sekikawa, A. Kosuge, T. Kanai, and S. Watanabe, “Nonlinear optics in the extreme ultraviolet,” Nature 432, 605 (2004).
16.A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. Rev. Lett. 97, 263901 (2006).
17.Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Z. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, and G. D. Tsakiris, “Attosecond phase locking of harmonics emitted from laserproduced plasmas,” Nat. Phys. 5, 124 (2009).
18.Y. Kobayashi, T. Sekikawa, Y. Nabekawa, and S. Watanabe, “27-fs extreme ultraviolet pulse generation by high-order harmonics,” Opt. Lett. 23, 64 (1998).
19.K. Furusawa, T. Okino, T. Shimizu, H. Hasegawa, Y. Nabekawa, K. Yamanouchi, and K. Midorikawa, “Photoelectron spectroscopy of two-photon ionisation of rare-gas atoms by multiple high order harmonics,” Appl. Phys. B 83, 203 (2006).
20.E. P. Benis, D. Charalambidis, T. N. Kitsopoulos, G. D. Tsakiris, and P. Tzallas, “Two-photon double ionization of rare gases by a superposition of harmonics,” Phys. Rev. A 74, 051402(R) (2006).
21.P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
22.M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509 (2001).
23.J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
24.M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291, 1923 (2001).
25.X. M. Tong and S. I. Chu. “Theoretical intense study of multiple high-order harmonic generation by ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chem,” Phys. 217, 119 (1997)
26.J. J. Carrera, X. M. Tong, and Shih-I Chu, “Creation and control of a single coherent attosecond xuv pulse by few-cycle intense laser pulses,” Phys. Rev. A 74, 023404 (2006).
27.X M Tong and C D Lin, “Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime,” J. Phys. B: At. Mol. Opt. Phys. 38 2593 (2005).
28.Jones et al., “Efficient global optimization of expensive black-box functions,” Journal of Global optimization 13(4), 455–492 (1998).
29.Shahriari et al., “Taking the human out of the loop: A review of Bayesian optimization,” Proceedings of the IEEE (104), no.1, 148-175 (2016).
30.Mocku et al., “The application of Bayesian methods for seeking the extremum,” Towards Global Optimization 2(2), 117-1292 (1978).
31.Snoek et al., “Practical Bayesian optimization of machine learning algorithms,” Advances in Neural Information Processing Systems, 2960–2968, (2012).
32.Forrester et al., “Multi-fidelity optimization via surrogate modeling,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (463), 3251-3269 (2007).
33.Negoescu et al., “The knowledge gradient algorithm for sequencing experiments in drug discovery,” INFORMS Journal on Computing 23(1), 46-63 (2011).
34.Frazier et al., “Bayesian optimization for material design,” Lookman, T., Alexander et al., editors, Information Science for Material Discovery and Design, 45-75, Springer (2016).
35.Packwood, “Bayesian Optimization for Materials Science,” 3. Springer.
36.Shahriari et al., “Taking the human out of the loop: A review of Bayesian optimization,” Proceedings of the IEEE (104), no.1, 148-175 (2016).
37.Eriksson, D., Dong, K., Lee, E., Bindel, D., and Wilson, A. G. “Scaling Gaussian process regression with derivatives. In Advances in Neural Information Processing Systems,” pp. 6868–6878, 2018.
38.Z. Chang, A. Rundquist, H. Wang, I. Christov, H. C. Kapteyn, and M. M. Murnane. “Temporal phase control of soft-x-ray harmonic emission,” Phys. Rev. A 58, R30, 1998.
39.I. L. Liu, P. C. Li, and Shih-I Chu. “Coherent control of the electron quantum paths for the generation of single ultrashort attosecond laser pulse,” Phys. Rev. A 84, 033414 (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74993-
dc.description.abstract我們用一個精確及有效率的方法來計算氦原子的高階諧和光譜,是第一次成功的使用貝氏優化來對雷射場作最佳化控制並且產生超短的阿秒雷射,氦原子在被優化的雷射場中所產生的高階諧和光譜的強度比被優化前的強了好幾個次方,並且可以有效率的產生超短阿秒雷射。我們用TDGPS方法精確且有效率的解隨時變得薛丁格方程式,並且用小波分析來計算電子的時間及頻率的資料。zh_TW
dc.description.abstractWe present an efficient and powerful method to determine the high-order harmonic generation (HHG) of the helium atoms that are exposed to the combination of chirped two-color mid-IR laser field and its 34th harmonics. We extend the machine-learning based optimization method, called Bayesian optimization (BO), to optimize the incident laser pulse to generate ultrashort attosecond laser pulse successfully for the first time. It is shown that the intensity of HHG power spectrum from the plateau region to the cutoff is enhanced by the optimized laser field by several orders of magnitude. Further, an ultrashort isolated attosecond pulse can be generated efficiently by superposing the plateau harmonics. The time-dependent Schrödinger equation is solved accurately and efficiently by means of the time-dependent generalized pseudospectral method and the time-frequency spectrum is obtained by the wavelet transform.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:20:30Z (GMT). No. of bitstreams: 1
U0001-2204202110185700.pdf: 3581481 bytes, checksum: 112ad42cf44ebc8071747b03e2c006cb (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents1Introduction.......1
1.1 High Harmonic Generation.......1
1.2 Attosecond Science.......2
1.3 Attosecond Metrology.......4
2Theoretical Methods.......7
2.1 Time Dependent Generalized Pseudospectral Method.......7
2.2 Wavelet Transform and the Generation of Isolated Attosecond Pulse.......16
3Bayesian Optimization.......19
3.1 Gaussian process regression.......20
3.2 Expected improvement acquisition function.......22
3.3 Application of BO.......23
4Results and discussion.......27
5Summary.......35
References.......36
dc.language.isoen
dc.subject諧和製造zh_TW
dc.subjectHHGen
dc.title以貝氏方法最佳化控制高階諧波產生超短阿秒雷射zh_TW
dc.titleBayesian Approach for the Optimal Control of High-order Harmonics for the Generation of Ultrashort Attosecond Laser Pulsesen
dc.typeThesis
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊瑋(Jiunn-Wei Chen),管希聖(Hsi-Sheng Goan)
dc.subject.keyword諧和製造,zh_TW
dc.subject.keywordHHG,en
dc.relation.page40
dc.identifier.doi10.6342/NTU202100848
dc.rights.note有償授權
dc.date.accepted2021-04-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-2204202110185700.pdf
  未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved