請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74988完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫(Lon Wang) | |
| dc.contributor.author | YUNG-LIN HSU | en |
| dc.contributor.author | 許永霖 | zh_TW |
| dc.date.accessioned | 2021-06-17T09:12:06Z | - |
| dc.date.available | 2021-09-02 | |
| dc.date.copyright | 2019-09-02 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-20 | |
| dc.identifier.citation | [1] G. T. Reed, and A. P. Knights, “Silicon Photonics,” Wiley New York, 2004.
[2] P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as High-Pressure microfluidic reactors’’ Science, Vol. 311, pp 1583-1586, Mar. 2006. [3] Bayindir, M., Sorin, F., Abouraddy, A. F., Viens, J., Hart, S. D., Joannopoulos, J. D., & Fink, Y, “Metal–insulator–semiconductor optoelectronic fibres,” Nature, 431, pp. 826-829, 2004. [4] J.R. Sparks, R .He , N. Healy, M. Krishnamurthi, A. C. Peacock , P. J. A. Sazio , V. Gopalan , and John V. Badding “Zinc selenide optical fibers,” Advanced material, Vol. 23, pp 1647–1651, Mar. 2011. [5] H. Tyagi, M. Schmidt, L. Prill Sempere, and P. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Optics Express, vol. 16, pp. 17227-17236, 2008. [6] Mehta, P., Krishnamurthi, M., Healy, N., Baril, N. F., Sparks, J. R., Sazio, P. J. , and Peacock, A. C. “Mid-infrared transmission properties of amorphous germanium optical fibers,” Applied Physics Letters, 97(7), 071117, 2010. [7] A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser & Photonics Reviews, vol. 8, pp. 53-72, 2014. [8] Ballato, J., Hawkins, T., Foy, P., Stolen, R., Kokuoz, B., Ellison, M. and Sharma, S. “Silicon optical fiber,” Optics Express, 16(23), 18675-18683, 2008. [9] Gumennik, A., Wei, L., Lestoquoy, G., Stolyarov, A. M., Jia, X., Rekemeyer, P. H., & Gradečak, S. “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities,” Nature communications, 4, 2013. [10] B. R. Jackson, P. Sazio, and J. V. Badding, “Single-crystal semiconductor wires integrated into microstructured optical fibers,” Advanced Materials, vol. 20, pp. 1135-1140, 2008. [11] B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Optical Engineering, vol. 48, pp. 100501-1-100501-3, 2009. [12] He, R., Day, T. D., Krishnamurthi, M., Sparks, J. R., Sazio, P. J., Gopalan, V., & Badding, J. V. “Silicon p‐i‐n junction fibers,” Advanced Materials, 25(10), 1461- 1467, 2013. [13] F. Martinsen, B. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. Gibson, “Silicon- core glass fibres as microwire radial-junction solar cells,” Scientific Reports, vol. 4, pp. 6283-1-6283-7, 2014. [14] Mehta, P., Healy, N., Day, T. D., Sparks, J. R., Sazio, P. J. A., Badding, J. V., & Peacock, A. C. “All-optical modulation using two-photon absorption in silicon core optical fibers,” Optics Express, 19 (20), 19078-19083, 2011. [15] R. He, P. J. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nature Photonics, vol. 6, no.3, pp.174-179, Feb. 2012. [16] P. F. Wang, C. C. O'Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett., vol.102, no. 1, pp.011111-1-011111-4, Jan. 2013. [17] Scott, Brian L., Ke Wang, and Gary Pickrell, “Fabrication of n-type silicon optical fibers,” IEEE Photon. Technol. Lett., vol.21, no.24, pp.1798-1800, Dec. 2009. [18] L. Shen, N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous Si core fibers towards the mid-infrared regime,” Optics Express, vol. 21, no.11, pp.13075-13083, Jun. 2013. [19] B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron, vol. 12, no.3, pp.412-421, Jun. 2006. [20] N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep., vol. 3, no. 2885, Oct. 2013. [21] J. Ballato, T. Hawkins, P. Foy, S. Morris, N. K. Hon, B. Jalali, and R. Rice, “Silica- clad crystalline germanium core optical fibers,” Optical Letters., vol. 36, no. 5, pp. 687-688, Mar. 2011. [22] Limin Xiao, et al, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett., vol. 32, no. 2, pp. 115-117, Jan. 2007. [23] Limin Xiao, et al, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: Microhole Collapse Effect,” J. Lightw. Technol., vol. 25, no. 11, pp. 3563-3574, Nov. 2007. [24] L. M. Xiao, et al,” Fusion splicing of silicon optical fibres, “CLEO, 21-25 Jun, 2015. [25] Jian-Hong Chen, et al, IEEE. Photon. Technol. Lett., vol. 28, no. 16, pp. 1774-1777, Aug. 2016. [26] Yu, Chenxu, Ganjoo, Ashtosh, et al, Analytical Chemistry., “Mid-IR Biosensor: Detection and Fingerprinting of Pathogens on Gold Island Functionalized Chalcogenide Films. Analytical chemistry.” Vol. 78, no. 8, pp. 2500-2506, April, 2006. [27] Mizaikoff, Boris, Chem. Soc. Rev., “Waveguide-enhanced mid-Infrared Chem/Bio sensors. Chemical Society reviews.” Vol. 42. 2013. [28] Daniel Rodrigo, Odeta Limaj, et al, Science, “Mid-infrared plasmonic biosensing with graphene.” Vol. 349, Issue 6244, pp. 165-168, 2015. [29] JINBAO XIA, et al, OSA Continuum, “Sensitive acetone detection with a mid-IR interband cascade laser and wavelength modulation spectroscopy.” Vol. 2, no. 3, pp. 640-654, 2019. [30] Bruno Bureau, et al, Optical Engineering, “Chalcogenide optical fibers for mid-infrared sensing.” Vol. 53, no. 2, pp. 027101- 027101-7, 2014. [31] B.A. Matveev, et al, Sensors and Actuators, “Mid-infrared (3-5 pm) LEDs as sources for gas and liquid sensors.” Vol. 38-39, no. 3, pp. 339- 343, 1997. [32] Florent Stareckia, et al, Sensors and Actuators, 'Mid-IR optical sensor for CO2detection based on fluorescenceabsorbance of Dy3+:Ga5Ge20Sb10S65fibers.' vol. 207, pp. 518-525, Oct. 2015. [33] L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, 'Low loss silicon fibers for photonics applications,' Appl. Phys. Lett., vol. 96, no. 041105, pp. 1-3, 2010. [34] N. Healy, L. Lagonigro, J. R. Sparks, S. Boden, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, 'Polycrystalline silicon optical fibers with atomically smooth surfaces,' Optics Letters, vol. 36, no. 13, Jul. 2011. [35] L. Tong, J. Lou, E. Mazur “Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides,” Optical Express, vol. 12, pp. 1025- 1035, Mar. 2004. [36] B. L. Scott, G. R. Pickrell, 'Silicon optical fiber diameter dependent grain size,' Journal of Crystal Growth, vol. 371, pp. 134-141, Mar. 2013. [37] E. F. Nordstrand, A. N. Dibbs, A. J. Eraker, and U. J. Gibson, “Alkaline oxide interface modifiers for silicon fiber production,” Optical Material Express., vol. 3, no. 5, pp. 651-657, Apr. 2013. [38] S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock , V. Gopalan, and J. V. Badding, 'Crystalline Silicon Optical Fibers with Low Optical Loss,' ACS Phontonics, vol 3, pp. 378-384, Jan. 2016. [39] N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, 'CO2 Laser-Induced Directional Recrystallization to Produce Single Crystal Silicon-Core Optical Fibers with Low Loss,' Adv. Optical Mater., Vol. 4, pp 1004-1008, Jul. 2016. [40] X. Ji, S. Lei,S.Y. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, 'Single-Crystal Silicon Optical Fiber by Direct Laser Crystallization,' ACS Phontonics, vol. 4, no.1, pp. 85-92, Dec. 2016. [41] N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, 'Annealing of silicon optical fibers,' Journal of Applied Physics, vol. 110, no.093107, pp. 2-6, Nov. 2011. [42] M. Fokine, A. Theodssiou, S. Song, T. Hawkins, J. Babllato,4 K. Kalli, and U. J. Gibson, 'Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,' Optical Materials Express, vol. 7, no.5, pp. 1589-1597, May 2017. [43] N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio1, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding and A. C. Peacock, 'Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,' Nature Material, vol 13, pp, 1122-1127, Dec. 2014. [44] K. M. Rosfjord, et al, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express vol. 14, pp. 527–534, Jan. 2006. [45] J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Exp., vol. 18, no. 25, pp. 26760–26768, Dec. 2010. [46] Rui Yu, Kwong-Lung Ching, et al, “Strong Light Absorption of Self-Organized 3-D Nanospike Arrays for Photovoltaic Applications,” ACSNANO. vol. 5, pp. 9291–9298, Nov. 2011. [47] J. Westwater, et al, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B vol. 15(3), pp.554-557, Jun. 1997. [48] Shinichi Tachi, et al, “Low-temperature reactive ion etching and microwave plasma etching of silicon,” Appl. Phys. Lett. vol. 52, pp.616-618, Feb. 1988. [49] Jian-Hong Chen, et al, “Reducing Splicing Loss Between a Silicon-Cored Optical Fiber and a Silica Optical Fiber,” IEEE. Photon. Technol. Lett., vol. 28, no. 16, pp. 1774-1777, Aug. (2016). [50] Z. Huang, N. Geyer, P. Werner, J. D. Boor, and U. Gösele, “Metalassisted chemical etching of silicon: A review,” Adv. Mat., vol. 23, no. 2, pp. 285–308, Jan. 2011. [51] X. Li, and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett. vol. 77, pp.2572-2574, Oct. 2000. [52] C. Chartier, et al, “Metal-assisted chemical etching of silicon in HF-H2O2,” ScienceDirect. vol. 53, pp.5509-5516, Jul. 2008. [53] Y. P. Huang, and L. A. Wang, “In-line silicon Schottky photodetectors on Si cored fibers working in 1550 nm wavelength regimes,” Appl. Phys. Lett., vol. 106, no. 19, pp. 191106-1-191106-4, May. 2015. [54] S.L. Zhang, Z.W. Zhao, N. Chen, F.F. Pang, Z.Y. Chen, Y.Q. Liu, and T.Y. Wang, “Temperature characteristics of Si core optical fiber Fabry-Perot interferometer,” Opt. lett., vol. 40, no. 7, pp. 1362-1365, Apr. 2015. [55] L. M. Xiao, N. Healy, T. Hawkins, M. Jones, J. Ballato, U. Gibson, and A. C. Peacock, “In-fiber silicon microsphere as a hybrid Fabry-Pérot microcavity for temperature sensing,” in CLEO/Europe-EQEC, 2015. [56] Limin Xiao, et al, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett., vol. 32, no. 2, pp. 115-117, Jan. 2007. [57] M. L. V. Tse, et al, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE. Photon. Technol. Lett., vol. 21, no. 3, pp. 164-166, Feb. 2009. [58] A. C. Peacock, U. J. Gibson, J. Ballato. “Silicon optical fibres – past, present, and future.” Adv. Phys, 1(1). 114-127. 2016. [59] L.L. Blyler Jr, F. V. DiMarcello. Fiber Drawing, Coating, and Jacketing. Proc. IEEE, 68(10). 1194-1198. 1980. [60] U. Paek. High-speed high-strength fiber drawing. J. Light. Technol, 4(8). 1048-1060. 1986. [61] U. Paek. Free Drawing and Polymer Coating of Silica Glass Optical Fibers. J. Heat Transfer, 121(4). 774-788. 1999. [62] D. J. Gardiner, P. R. Graves, H. J. Bowley , D. L. Gerrard, J. D. Louden, G. Turrell, “Practical Raman Spectroscopy,” Springer-Verlag, optical frequencies, IEEE Proceedings, vol. 133, pp. 191-198, 1986. [63] D. J. Won, M. O. Ramirez, H. Kang, V. Gopalana, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Applied Physics Letters, vol. 91, pp. 161112-1 – 161112-3, 2007. [64] Okada, Y., & Tokumaru, Y., “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” Journal of Applied Physics, 56(2), 314-320, 1984. [65] B. H. W. S. D. Jong, R. G. C. Beerkens, P. A. V. Nijnatten, “Ullmann's Encyclopedia of Industrial Chemistry,” Wiley, VCH, 2000. [66] C. A. Lin, et al, “High-Q Si microsphere resonators fabricated from Si-cored fibers for WGMs excitation,” IEEE. Photon. Technol. Lett., vol. 27, pp. 1041-1135, 2015. [67] H.-J. Yoon and C.-G. Kim, “The mechanical strength of fiber Bragg gratings under controlled UV laser conditions,” Smart Mater. Struct., vol. 16, no. 4, pp. 1315–1319, Aug. 2007. [68] C. Yan, H. Yu, L. Ye, J. Canning, and B. Ashton, “Tensile behavior of photonic crystal fibers,” Key Eng. Mat., vol. 353–358, pp. 615–618, Sep. 2007. [69] L.K.Baker, “Optical Fiber Mechanical Testing Techniques,” Documentation Technique Corning, May. 2001. [70] P. E. Klingsporn, “Characterization of Optical Fiber Strength under Applied Tensile Stress and Bending Stress,” (Topical Report). UNCLASSIFIED. Kansas City Division: KCP-613-6655, March. 2003. [71] P. Antunes and F. Domingues, “Mechanical Properties of Optical Fibers, Mechanical Properties of Optical Fibers, Selected Topics on Optical Fiber Technology,” Dr Moh. Yasin (Ed.), InTech, 2012. [72] V. Ladislav Lirtsman, et al, “Infra-Red Surface-Plasmon-Resonance technique for biological studies.” J. Appl. Phys., vol. 103, pp. 014702-1, 2008. [73] Limin Tong, et al, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides.” OPTICS EXPRESS., vol. 12, no.6, pp. 1025-1035, 2004. [74] Hana Tzu-Han Lin, et al, “A Large-Area Nanoplasmonic Sensor Fabricated by Rapid Thermal Annealing Treatment for Label-Free and Multi-Point Immunoglobulin Sensing.” Nanomaterials., vol. 7, pp. 1-11, 2017. [75] V. Švorˇcík, et al, “Annealing of sputtered gold nano-structures.” Appl Phys A., vol. 102, pp. 747-751, 2011. [76] Ting Feng, et al, “Deposition of gold nanoparticles upon bare and indium tin oxide film coated glass based on annealing process.” JOURNAL OF EXPERIMENTAL NANOSCIENCE., vol. 14, no.1, pp. 13-22, 2018. [77] Bidyut Barman, et al, “Fabrication of silver nanoparticles on glass substrate using low-temperature rapid thermal annealing.” Energy & Environment., vol. 0, pp. 1-14, 2018. [78] Thanh Tung Bui, et al, “Gold nanoparticles created by rapid thermal annealing process applied to thin film solar cell.” Eur. Phys. J. Appl. Phys., vol. 76, pp. 10301-p10, 2016. [79] Lopatynskyi, et al, “Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography.” Nanoscale Research Letters., vol. 12, pp. 1-9, 2015. [80] Louise Nybacka, et al, “FTIR spectroscopy of glucose.” Examensarbete., vol. 16, no.79, pp. 1-19, 2016. [81] Songlin Yu, et al, “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor.” BIOMEDICAL OPTICS EXPRESS., vol. 5, no.1, pp. 275-286, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74988 | - |
| dc.description.abstract | 在本論文中,我們將矽粉填入玻璃管內,並以垂直抽絲法來製作矽核光纖(Silicon-Cored Fibers)。藉由優化抽絲的相關參數後,可以成功製作出約長1~2公尺長的矽核光纖,其纖衣與纖核的直徑誤差值分別控制在200±10μm與20±5μm左右,具有良好的均一性。由拉曼頻譜分析可知製作出的矽核光纖有著高純度和高度結晶的特性。
在本實驗室經由光纖抽絲塔抽出矽核半導體光纖後,在製作元件的過程中,半導體矽核光纖在連接一般單模光纖中本身會有熔接上的損耗,所以在併接的過程和方式是主要的關鍵,在此篇論文中就是利用我們所開發的一種新穎的熔接方式稱之為三環式電弧的熔接方法來連接單模光纖和矽核光纖,以降低熔接時所產生的熔接損耗,並同時與一般傳統的商用熔接機進行比較,證明此種三環電極放電式熔接法確實可以有效的降低異質光纖的熔接損耗。其中在同樣尺度的矽和光纖下,以三環式放電所得出之平均熔接損耗(Splicing Loss)為0.15~0.26dB,而相對用一般商用熔接機之平均熔接損耗為2.5~3dB左右。 最後應用方面,由於矽材料本身可以傳導到中紅外波段,故希望除了日後可以藉由我所製作的三環式放電結構來改善在中紅外傳輸時的熔接損耗外,還可以進一步得知在中紅外波段的感測效果,所以先以矽晶圓作為一個平台,作為未來可以在D型矽核光纖或矽核端面的前導,在實驗量測上,頻譜量測之共振位置和模擬有高度相似處,而其頻譜共振位置確實能隨著環境改變而飄移,穿透頻譜在折射率感測方面亦有良好的表現,其共振位置之靈敏度為1.61 nm / wt%。 | zh_TW |
| dc.description.abstract | Silicon-cored fibers were made by using a combined techniques of powder-in-tube and vertical-drawing. By optimizing the drawing parameters, 1~2 meters long silicon-cored fibers were successfully produced, and resultant silica cladding and Si core diameters being in the range of 200±10μm and 20±5μm. According to Raman spectrum analysis, the fabricated Si core is of high purity and high crystalline.
Silicon-cored fibers, silicon-cored fiber usually suffered from large losses when spliced with a single mode or multi-mode fiber to make an optical device. Therefore, splicing method is crucial. We developed a new way called Tricyclic Fusion Method to splice a silicon-cored fiber and a silica fiber, which could lower the splicing losses. In addition, we compared to the normal commercial fusion splicer to prove that Tricyclic Fusion could effectively reduce the splicing losses between two different kinds of fiber. With the same diameter of silicon-cored fibers, the Tricyclic Fusion Method resulted in an average splicing loss 0.15~0.26dB, and the commercial fusion splicer with average splicing loss about 2.5~3dB. In the last application, because the silicon material can conduct to the mid-infrared range, we hope not only improve the splice loss by tricyclic fusion method in Mid-IR range but also can have a sensing application in Mid-IR range. By using silicon chip as a platform, it can as a precursor to D-shaped silicon-cored fiber and silicon end surface in the future. In the measurement, the resonance position of the spectrum is highly similar to the simulation, and its spectral resonance position is shift with the environment. The spectrum also performs well in refractive index sensing, and the sensitivity of the resonance position is 1.61 nm / wt%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T09:12:06Z (GMT). No. of bitstreams: 1 ntu-108-R05941028-1.pdf: 6149982 bytes, checksum: 1f485ab5ea6dd3c246b9fd69278c7480 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii Statement of Contributions v CONTENTS vi LIST OF FIGURE viii LIST OF TABLE xvi LIST OF ABBREVIATIONS xvii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.2.1 Fabrication Methods of Silicon-Cored Fibers 3 1.2.2 Annealing of Silicon-Cored Fibers 6 1.2.3 Anti-Reflection structures on Silicon Cored Fibers 9 1.2.4 Splicing two kinds of fibers 12 1.2.5 Mid-IR Range Application 14 1.3 Organization of the Thesis 16 Chapter 2 Fabrication and Characterization of Silicon-cored Fiber 17 2.1 Fabrication of Silicon-Cored Fibers 17 2.1.1 A Silicon-cored Fiber Drawing Tower 17 2.1.2 Fabrication Process of Silicon-Core Fibers 21 2.1.3 Raman Spectra Analysis of Annealed Silicon-Cored Fibers 27 2.2 Fabrication of Silicon Microsphere and Si-Wire 32 2.3 Optical Propagation Losses of SCF and SMF 36 2.4 Polishing of Silicon-cored Fiber and D-shaped Fiber 40 2.5 Summary 50 Chapter 3 Fuse Splicing between Silicon-Cored Fibers and Silica Fibers 51 3.1 A New Splicing Method called Tricyclic Fusion Method 51 3.2 Comparison of two different methods on Splicing SCF and SMF 58 3.3 Mechanical Strength of Spliced Silicon-Cored Fibers 65 3.4 Summary 69 Chapter 4 Silicon Platform and Silicon-Cored Fiber Sensor in Mid-IR range 70 4.1 Experiment Setup and spectrum of Mid-IR range 70 4.2 Characteristics analysis of gold Nanoparticles 75 4.3 Optical characteristics of the LSPR silicon chip 80 4.4 Refractive Indices Sensing results in Mid-IR range 84 4.5 Summery 88 Chapter 5 Conclusion and Future Work 89 5.1 Conclusion 89 5.2 Future Work 90 References 92 Publication 102 | |
| dc.language.iso | en | |
| dc.subject | 矽核光纖 | zh_TW |
| dc.subject | 抽絲光纖 | zh_TW |
| dc.subject | 三環放電熔接 | zh_TW |
| dc.subject | 中紅外波段 | zh_TW |
| dc.subject | 表面電漿 | zh_TW |
| dc.subject | 折射率感測器 | zh_TW |
| dc.subject | mid-infrared | en |
| dc.subject | silicon-cored fiber | en |
| dc.subject | drawing optical fiber | en |
| dc.subject | fiber fusion splice | en |
| dc.subject | anti-reflection | en |
| dc.subject | splicing loss | en |
| dc.title | 矽核光纖與玻璃光纖熔接方法之改善及矽核光纖在中紅外波段的折射率感測應用 | zh_TW |
| dc.title | Improving Silicon-Cored Fiber and a Silica Fiber Splicing method, and Application in Refractive Index Sensing In Mid-IR Range | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡五湖,蔡曜陽,黃念祖 | |
| dc.subject.keyword | 矽核光纖,抽絲光纖,三環放電熔接,中紅外波段,表面電漿,折射率感測器, | zh_TW |
| dc.subject.keyword | silicon-cored fiber,drawing optical fiber,fiber fusion splice,anti-reflection,splicing loss,mid-infrared, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU201904054 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
