Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74968
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰
dc.contributor.authorShu-Ting Yangen
dc.contributor.author楊舒婷zh_TW
dc.date.accessioned2021-06-17T09:11:33Z-
dc.date.available2020-09-03
dc.date.copyright2019-09-03
dc.date.issued2019
dc.date.submitted2019-08-23
dc.identifier.citation[1] R. Siegiel, K. Miller, and A. Jemal, 'Cancer statistics, 2017,' CA Cancer J Clin, vol. 67, pp. 7-30, 2017.
[2] L. A. Torre et al., 'Ovarian cancer statistics, 2018,' CA: a cancer journal for clinicians, vol. 68, no. 4, pp. 284-296, 2018.
[3] A. Migowski, 'Early detection of breast cancer and the interpretation of results of survival studies/A deteccao precoce do cancer de mama e a interpretacao dos resultados de estudos de sobrevida,' Ciencia & saude coletiva, vol. 20, no. 4, pp. 1309-1310, 2015.
[4] D. S. Salem, R. M. Kamal, S. M. Mansour, L. A. Salah, and R. Wessam, 'Breast imaging in the young: the role of magnetic resonance imaging in breast cancer screening, diagnosis and follow-up,' Journal of thoracic disease, vol. 5, no. Suppl 1, p. S9, 2013.
[5] N. Hylton, 'Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker,' J Clin Oncol, vol. 24, no. 20, pp. 3293-3298, 2006.
[6] I. Martincorena and P. J. Campbell, 'Somatic mutation in cancer and normal cells,' Science, vol. 349, no. 6255, pp. 1483-1489, 2015.
[7] A. B. Williams and B. Schumacher, 'p53 in the DNA-damage-repair process,' Cold Spring Harbor perspectives in medicine, vol. 6, no. 5, p. a026070, 2016.
[8] B. Li, X. Zhao, S.-C. Dai, and W. Cheng, 'Associations between mammography and ultrasound imaging features and molecular characteristics of triple-negative breast cancer,' Asian Pac J Cancer Prev, vol. 15, no. 8, pp. 3555-9, 2014.
[9] K. M. Krizmanich-Conniff et al., 'Triple receptor–negative breast cancer: imaging and clinical characteristics,' American Journal of Roentgenology, vol. 199, no. 2, pp. 458-464, 2012.
[10] Y.-F. Yu, Y. Zhang, N. Shen, R.-Y. Zhang, and X.-Q. Lu, 'Effect of VEGF, P53 and telomerase on angiogenesis of gastric carcinoma tissue,' Asian Pacific journal of tropical medicine, vol. 7, no. 4, pp. 293-296, 2014.
[11] K. E. Bachman et al., 'The PIK3CA gene is mutated with high frequency in human breast cancers,' Cancer biology & therapy, vol. 3, no. 8, pp. 772-775, 2004.
[12] D. Zardavas, W. A. Phillips, and S. Loi, 'PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data,' Breast cancer research, vol. 16, no. 1, p. 201, 2014.
[13] R. Dent et al., 'Triple-negative breast cancer: clinical features and patterns of recurrence,' Clinical cancer research, vol. 13, no. 15, pp. 4429-4434, 2007.
[14] T. Mukohara, 'PI3K mutations in breast cancer: prognostic and therapeutic implications,' Breast Cancer: Targets and Therapy, vol. 7, p. 111, 2015.
[15] I. O. Baas, J. W. R. Mulder, G. J. A. Offerhaus, B. Vogelstein, and S. R. Hamilton, 'An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms,' The Journal of pathology, vol. 172, no. 1, pp. 5-12, 1994.
[16] H. Puhalla et al., 'p53 analysis in gallbladder cancer: comparison of gene analysis versus immunohistochemistry,' Anticancer research, vol. 24, no. 2C, pp. 1201-1206, 2004.
[17] M. J. McAuliffe, F. M. Lalonde, D. McGarry, W. Gandler, K. Csaky, and B. L. Trus, 'Medical image processing, analysis and visualization in clinical research,' in Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001, 2001: IEEE, pp. 381-386.
[18] M. A. Mazurowski, 'Radiogenomics: what it is and why it is important,' Journal of the American College of Radiology, vol. 12, no. 8, pp. 862-866, 2015.
[19] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning (nature, no. 7553). 2015, p. 436.
[20] A. Field, Discovering statistics using SPSS:(and sex, drugs and rock'n'roll). Sage, 2000.
[21] Y. Kim, 'Convolutional neural networks for sentence classification,' arXiv preprint arXiv:1408.5882.
[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, 'Large-scale video classification with convolutional neural networks,' in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2014, pp. 1725-1732.
[23] N. Antropova, B. Q. Huynh, and M. L. Giger, 'A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets,' Medical physics, vol. 44, no. 10, pp. 5162-5171, 2017.
[24] K. He, X. Zhang, S. Ren, and J. Sun, 'Deep residual learning for image recognition,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 'Imagenet classification with deep convolutional neural networks,' in Advances in neural information processing systems, 2012, pp. 1097-1105.
[26] H. Greenspan, B. Van Ginneken, and R. M. Summers, 'Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique,' IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153-1159, 2016.
[27] G. Litjens et al., 'A survey on deep learning in medical image analysis,' Medical image analysis, vol. 42, pp. 60-88, 2017.
[28] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, 'Densely connected convolutional networks,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700-4708.
[29] S. Hochreiter, 'The vanishing gradient problem during learning recurrent neural nets and problem solutions,' International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107-116, 1998.
[30] R. Kohavi and D. Sommerfield, 'Feature Subset Selection Using the Wrapper Method: Overfitting and Dynamic Search Space Topology,' in KDD, 1995, pp. 192-197.
[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. 2018.
[32] L. Perez and J. Wang, 'The effectiveness of data augmentation in image classification using deep learning,' arXiv preprint arXiv:1712.04621.
[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 'Dropout: a simple way to prevent neural networks from overfitting,' The journal of machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014.
[34] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, 'Improving neural networks by preventing co-adaptation of feature detectors,' arXiv preprint arXiv:1207.0580.
[35] T. Zhang and B. Yu, 'Boosting with early stopping: Convergence and consistency,' The Annals of Statistics, vol. 33, no. 4, pp. 1538-1579, 2005.
[36] R. Caruana, S. Lawrence, and C. L. Giles, 'Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping,' in Advances in neural information processing systems, 2001, pp. 402-408.
[37] W. K. Pratt, Introduction to digital image processing. 2013.
[38] K. Clark et al., 'The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository,' Journal of digital imaging, vol. 26, no. 6, pp. 1045-1057, 2013.
[39] W. Lingle et al., 'Radiology Data from The Cancer Genome Atlas Breast Invasive Carcinoma [TCGA-BRCA] collection,' The Cancer Imaging Archive, 2016.
[40] S. Hojjatoleslami and J. Kittler, 'Region growing: a new approach,' IEEE Transactions on Image processing, vol. 7, no. 7, pp. 1079-1084, 1998.
[41] M. Shah et al., 'Evaluating intensity normalization on MRIs of human brain with multiple sclerosis,' Medical image analysis, vol. 15, no. 2, pp. 267-282, 2011.
[42] L. G. Nyúl, J. K. Udupa, and X. Zhang, 'New variants of a method of MRI scale standardization,' IEEE transactions on medical imaging, vol. 19, no. 2, pp. 143-150, 2000.
[43] Digital imaging and communications in medicine (DICOM) standard, NEMA, 2001.
[44] R.-F. Chang, H.-H. Chen, Y.-C. Chang, C.-S. Huang, J.-H. Chen, and C.-M. Lo, 'Quantification of breast tumor heterogeneity for ER status, HER2 status, and TN molecular subtype evaluation on DCE-MRI,' Magnetic resonance imaging, vol. 34, no. 6, pp. 809-819, 2016.
[45] E. I. Zacharaki et al., 'Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme,' Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 62, no. 6, pp. 1609-1618, 2009.
[46] F. Orlhac, M. Soussan, J.-A. Maisonobe, C. A. Garcia, B. Vanderlinden, and I. Buvat, 'Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis,' Journal of Nuclear Medicine, vol. 55, no. 3, pp. 414-422, 2014.
[47] F. Davnall et al., 'Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?,' Insights into imaging, vol. 3, no. 6, pp. 573-589, 2012.
[48] A. Soler et al., 'Inhibition of the p110α isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis,' Journal of Experimental Medicine, vol. 210, no. 10, pp. 1937-1945, 2013.
[49] Z. Klimonda, P. Karwat, K. Dobruch-Sobczak, H. Piotrzkowska-Wróblewska, and J. Litniewski, 'Breast-lesions characterization using Quantitative Ultrasound features of peritumoral tissue,' Scientific reports, vol. 9, no. 1, p. 7963, 2019.
[50] S.-C. Huang, F.-C. Cheng, and Y.-S. Chiu, 'Efficient contrast enhancement using adaptive gamma correction with weighting distribution,' IEEE transactions on image processing, vol. 22, no. 3, pp. 1032-1041, 2012.
[51] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, 'Understanding deep learning requires rethinking generalization,' arXiv preprint arXiv:1611.03530.
[52] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 'Rethinking the inception architecture for computer vision,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826.
[53] A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache, 'Learning visual features from large weakly supervised data,' in European Conference on Computer Vision, 2016, pp. 67-84.
[54] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, 'Revisiting unreasonable effectiveness of data in deep learning era,' in Proceedings of the IEEE international conference on computer vision, 2017, pp. 843-852.
[55] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, 'Focal loss for dense object detection,' in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980-2988.
[56] R. Kohavi, 'A study of cross-validation and bootstrap for accuracy estimation and model selection,' in Ijcai, 1995, vol. 14, no. 2, pp. 1137-1145.
[57] S. M. Weiss and N. Indurkhya, 'Decision tree pruning: biased or optimal?,' in AAAI, 1994, pp. 626-632.
[58] N. Diamantidis, D. Karlis, and E. A. Giakoumakis, 'Unsupervised stratification of cross-validation for accuracy estimation,' Artificial Intelligence, vol. 116, no. 1-2, pp. 1-16, 2000.
[59] L. Prechelt, 'Early stopping-but when?,' in Neural Networks: Tricks of the trade, 1998, pp. 55-69.
[60] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, 'The elements of statistical learning: data mining, inference and prediction,' The Mathematical Intelligencer, vol. 27, no. 2, pp. 83-85, 2005.
[61] W. K. Moon, H.-H. Chen, S. U. Shin, W. Han, and R.-F. Chang, 'Evaluation of TP53/PIK3CA mutations using texture and morphology analysis on breast MRI,' Magnetic Resonance Imaging, vol. In Press, Journal Pre-proof, 2019.
[62] T. Fawcett, 'An introduction to ROC analysis,' Pattern recognition letters, vol. 27, no. 8, pp. 861-874, 2006.
[63] R. M. Haralick and K. Shanmugam, 'Textural features for image classification,' IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610-621, 1973.
[64] M. Masotti and R. Campanini, 'Texture classification using invariant ranklet features,' Pattern Recognition Letters, vol. 29, no. 14, pp. 1980-1986, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74968-
dc.description.abstract乳癌是女性最常罹患的癌症之一,若得以在罹癌早期成功偵測,將能降低乳癌死亡率。臨床上經常利用動態磁振造影檢驗患者是否罹患乳癌,而乳癌確診後,若能辨認出有關的生物標記物,將有助於為病患制定一套合適的療程。影像基因圖譜學是新興的研究領域,旨在尋找影像特徵與基因表型間的關聯,提供非侵入式且整體性的量化分析,以此辨識生物標記物。近年來,利用卷積神經網路進行的深度學習方法受到廣泛運用,在包含醫學影像分析等各式各樣的任務中,皆有相當卓越的表現。本論文使用了107筆胸部的三維動態磁振造影樣本,利用深度學習模型自動提取影像特徵,藉此辨認患者的TP53及PIK3CA兩種體細胞基因是否發生突變。在實驗結果中,對於預測TP53及PIK3CA基因突變,準確率分別高達87.97%和82.24%,靈敏性則各自達到82.50%及74.29%,顯示本研究方法能從三維動態磁振造影中有效識別此二種基因突變。zh_TW
dc.description.abstractBreast cancer is one of the most common malignancies in females, while an early-stage detection can reduce the mortality. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is commonly used for breast cancer examination. Once breast cancer is diagnosed, it is more beneficial to recognize related biomarkers for customizing a treatment plan. Radiogenomics research has emerged recently, which focuses on the associations between imaging features and genomic patterns. It provides non-invasive and overall quantification to identify the biomarkers. In recent years, deep learning with convolutional neural networks (CNNs) has been broadly adopted and achieved remarkable performance on various tasks, including medical image analysis. In this study, we propose a method that exploits deep learning to automatically extract image features to differentiate the TP53 and PIK3CA mutations on 3-D breast MRI with 107 cases. The proposed method achieves the accuracies of 87.97% and 82.24%, and the sensitivities of 82.50% and 74.29%, for identifying TP53 and PIK3CA mutations, respectively. The result shows the high potential of this method to recognize these two gene mutations.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:11:33Z (GMT). No. of bitstreams: 1
ntu-108-R06944040-1.pdf: 4152747 bytes, checksum: 96b9a2285e16e48b7f7eb777a04e6780 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
Contents v
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Materials 5
Chapter 3 Methods 7
3.1 Tumor Segmentation 8
3.2 Pre-processing 9
3.3 CNN 14
3.3.1 3-D DenseNet 15
3.3.2 Data Augmentation 19
3.3.3 Focal Loss 20
3.3.4 Implementation Details for CNN Training 21
Chapter 4 Experimental Results and Discussions 23
4.1 Experiment Environment 23
4.2 Evaluation 23
4.3 Experimental Results 24
4.3.1 Comparison with Conventional Method 24
4.3.2 Comparisons Between Different Enhancement Techniques 26
4.3.3 Comparisons Among Different Input Combinations 29
4.3.4 Comparisons Among Different Data Augmentation Strategies 32
4.3.5 Comparisons Between 2-D and 3-D Input Data 36
4.4 Discussions 38
Chapter 5 Conclusions and Future Works 41
References 42
dc.language.isoen
dc.subject體細胞突變zh_TW
dc.subject電腦輔助診斷zh_TW
dc.subject動態磁振造影zh_TW
dc.subject三維卷積神經網路zh_TW
dc.subject深度學習zh_TW
dc.subject乳癌zh_TW
dc.subjectsomatic mutationen
dc.subjectDCE-MRIen
dc.subjectdeep learningen
dc.subject3-D convolutional neural networken
dc.subjectcomputer-aided diagnosisen
dc.subjectbreast canceren
dc.title利用深度卷積神經網路於乳房磁振造影進行TP53及PIK3CA基因突變預測zh_TW
dc.titlePrediction of TP53/PIK3CA Mutation on Magnetic Resonance Images Using Deep Convolutional Neural Networksen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳鴻豪,羅崇銘
dc.subject.keyword乳癌,動態磁振造影,深度學習,三維卷積神經網路,電腦輔助診斷,體細胞突變,zh_TW
dc.subject.keywordbreast cancer,DCE-MRI,deep learning,3-D convolutional neural network,computer-aided diagnosis,somatic mutation,en
dc.relation.page46
dc.identifier.doi10.6342/NTU201903882
dc.rights.note有償授權
dc.date.accepted2019-08-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved