請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74966
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊申語 | |
dc.contributor.author | Kuo-Hsun Lee | en |
dc.contributor.author | 李國勳 | zh_TW |
dc.date.accessioned | 2021-06-17T09:11:29Z | - |
dc.date.available | 2019-09-03 | |
dc.date.copyright | 2019-09-03 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-26 | |
dc.identifier.citation | 參考文獻
[1] William D. Callister, Jr., Materials Science and Engineering: An Introduction, 5th ed., pp.14, 32, 122, 370, 767, appendix,(2007). [2] Gottlieb S. Leventhal, Jr. Titanium, A Metal for Surgery, Bone Joint Surg., Am. 33: pp.473-474,(1951). [3] H. Emnéus, U. Stenram, Taylor & Francis, Metal Implants in the Human Body: A Histopathological Study, Acta Orthopaedica Scandinavica,(1965). [4] Reza Abbaschian, Robert E. Reed-Hill, Physical metallurgical principles, 3rd ed., pp.190-192, 228-231, 240-264, 278-279, 614, 622, 706-718,(1996). [5] Matthew J. Donachi, Jr. Titanium, A Technical Guide, ASM, INTERNATIONAL, (1987). [6] U. Zwicker, K. Buhler, and R. Muller, in Titanium 80 Science and Technology, H. Kimura and O. Izumi, eds., AIME, New York, NY, pp.505-514,(1980). [7] P.J. Bania, Beta Titanium Alloys in the 1990’s, D. Eylon, R. R. Boyer, and D. A. Koss, eds., TMS, Warrendale, PA.,pp.3-14,(1993). [8] Matthew J. Donachie, Jr. Titanium and Titanium Alloys Source Book, ASM Metals Park, pp.12-105,(1982). [9] Metals Handbook, 9th ed., Vol. 3, American Society for Metals, Metals Park, Ohio, pp.357,(1990). [10] R.M. Brick, R.B. Gordon, and A. Phillips, Structure and Properties of Alloys, 3rd ed., McGraw-Hill, Inc., New York,(1965). [11] K. Detert, and J. Zieb, Trans. AIME, pp.233 51,(1965). [12] J.F. Lancaster, Metallurgy of Welding, 6th ed., pp.77, 103, 392,(1999). [13] E.R. Poulsen, and J.A. Hall, Extractive Metallurgy of Titanium: A Riview of the State of the Art and Evolving Production Techniques, Journal of Metals, No 7, pp.60,(1983). [14] 曾婉如,鈦金屬市場現況與應用商機,金屬中心MII-IT IS計畫,中工高雄會刊第21卷第1期,民101(2012). [15] R. M. Brick, A. W. Pence, and R. B. Gordon, Structure and Properties of Alloys, 4th ed., McGraw-Hill, New York,(1977). [16] J. R. Wood, and P. A. Russo, Heat Treatment of Titanium Alloys, Advances in the Science and Technology of Titanium Alloy Processing, pp.6, 227, 228, 229, 427,(1997). [17] Mecanical Properties Adapted from Metal Progress Vol. 107(3), March, pp.72,(1975). [18] C.R. Brooks, Nonferrous Alloys, American Society for Metals,(1984). [19] B.S. Hickman, The formation of omega phase in titanium and zirconium alloys, Journal of Materials Science, Vol. 4, Issue 6, pp.554-563,(1969). [20] Pierre Villars, Alan Prince, and Hiroaki Okamoto (Editor), Handbook of Ternary Alloy Phase Diagrams, ASM International,(1995). [21] T.B. Massalski, Binary Alloy Phase Diagrams, ASM International,(1986). [22]燕山大學科學技術研究院(機械電子工程)版權所有,中國知識產權局發明專利號:ZL025023.5, pp.12,22,(2009). [23] Heat treatment, Metals Handbook, 9th ed., Vol. 4, AMS Handbook Committee, pp.763-774,(1981). [24] M.F. Wu, Study on vacuum brazing of titanium alloy Ti-6Al-4V, Chinese Journal of Mechanical Engineering, Vol. 38(04), pp.71,(2002). [25] J.G. Lee, Y. H. Choi, J. K. Lee, G. J. Lee, M. K. Lee, and C. K. Rhee, Low-temperature brazing of titanium by the application of a Zr-Ti-Ni-Cu-Be bulk metallic glass (BMG) alloy as a filler, Intermetallic, Vol. 18(1), pp.70-73,(2010). [26] C.T. Chang, Y. C. Du, R. K. Shiue, and C. S. Chang, Infrared brazing of high-strength titanium alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni filler foils, Materials Science & Engineering A, Vol. 420(1-2), pp. 155-164,(2006). [27] T. Lee, E. Chang, and C. Yang, A comparison of the corrosion behaviour and surface characteristics of vacuum-brazed and heat-treated Ti6Al4V alloy, Journal of Materials Science: Materials in Medicine, Vol. 9(8), pp.429-437,(1998). [28] I.T. Hong, and C.H. Koo, Microstructural evolution and shear strength of brazing C103 and Ti–6Al–4V using Ti–20Cu–20Ni–20Zr (wt.%) filler metal, Hong, International Journal of Refractory Metals and Hard Materials, Vol. 24(3), pp.247-252, (2006). [29] J. R. Davis, K. Ferjutz, and N.D. Wheaton, Metals Handbook, Welding Brazing, and Soldering, Vol. 6, ASM International,(1990). [30] D. R. Gaskell, School of Material Engineering, Prudue University, Introduction to the Thermodynamics of Materials, pp.169,359,(2003). [31]莊東漢,材料破損分析Failure Analysis,五南圖書出版公R. D司, pp.444-446,(2007). [32]洪胤庭,鈮合金與鈦合金之真空硬銲接合及其接合介面之研究,國立臺灣大學材料科學與工程學研究所博士論文,民94(2005). [33] D. C. Wallace, Thermodynamics of Crystals, Wiley, New York,(1972). [34] C. A. Blue, R.A. Blue, and R.Y. Lin, Scripta Materialia, 32, pp.127,(1995). [35] Y. Takeuchi, M. Watanabe, S. Yamabe, and T. Wada, Eutektische Titan-und Zirkonium-Lote Metall, 22: 8-15,(1968). [36] P. B. Budberg, and S.P. Alisova, Phase Constitution of the Ti-Ti2Ni-Ti2Cu system, Dokl. Akad. Nauk SSSR 244 (6): 1370-1373,(1979). [37] A. K. Jena, S.B. Rajendraprasad, K.P. Gupta, and R.C. Sharma, The Copper-Nickel-Titanium System Alloy Phase Diagrams, 3 (2): 87-104,(1987). [38] M. C. Ho, P. J. Lo, W. L. Liu, and K. C. Hsieh, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, Relationship of Brazing Microstructure and Ti-Cu-Ni Phase Diagram, Journal of Materials Science and Engineering B 7 (7-8), pp.142-148,(2017). [39]吳政淵,使用鈦基填料紅外線硬銲鈦合金之研究,國立臺灣大學材料科學與工程學研究所博士論文,民98(2009). [40] O. Botstein, A. Schwarzman, and A. Rabinkin, Materials Science and Engineering, A206, pp.14,(1995). [41] W. F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill Inc.,(1993). [42] In-Ting Hong, and Chun-Hao Koo, Vacuum-furnace brazing of C103 and Ti–6Al–4V with Ti–15Cu–15Ni filler-metal, Materials Science & Engineering A, Vol. 398(1-2), pp.113-127,(2005). [43]葉子暘,使用鈦基填料真空硬銲鈦合金之研究,國立臺灣大學材料科學與工程學研究所博士論文,民102(2013). [44] C.T. Chang, Y.C. Du, R.K. Shiue, and C.S. Chang, Infrared brazing of high-strength titanium alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni filler foils, Materials Science & Engineering A, Vol. 420(1-2), pp.155-164,(2006). [45] C.T. Chang, and R.K. Shiue, Infrared brazing Ti–6Al–4V and Mo using the Ti–15Cu–15Ni braze alloy, International Journal of Refractory Metals and Hard Materials, Vol. 23(3), pp.161-170,(2005). [46] D.W. Wu, Z.Y. Liaw, R.K. Shiue, and C.S. Chang, Infrared vacuum brazing of Ti–6Al–4V and Nb using the Ti–15Cu–15Ni foil, Materials Science & Engineering A, Vol. 454, pp.104-113,(2007). [47] In-Ting Hong, and Chun-Hao Koo, The study of vacuum-furnace brazing of C103 and Ti–6Al–4V using Ti–15Cu–15Ni foil, Materials Chemistry and Physics, Vol. 94(1), pp.131-140,(2005). [48] In-Ting Hong, and Chun-Hao Koo, Microstructural evolution and shear strength of brazing C103 and Ti–6Al–4V using Ti–20Cu–20Ni–20Zr (wt.%) filler metal, International Journal of Refractory Metals and Hard Materials, Vol. 24(3), pp.247-252,(2006). [49] E. Ganjeh, H. Sarkhosh, M.E. Bajgholi, H. Khorsand, and M. Ghaffari, Increasing Ti–6Al–4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys, Materials Characterization, Vol. 71, pp.31-40,(2012). [50] C.T. Chang, Z.Y. Wu, R.K. Shiue, and C.S. Chang, Infrared brazing Ti–6Al–4V and SP-700 alloys using the Ti–20Zr–20Cu–20Ni braze alloy, Materials Letters, Vol. 61(3), pp.842-845,(2007). [51] Yongqiang Deng, Guangmin Sheng, Fangli Wang, Xinjian Yuan, Qi An, Microstructure evolution and mechanical properties of transient liquid phase bonded Ti-6Al-4V joint with copper interlayer, Materials and Design, pp.1-7,(2015). [52]黃盈翔,吳錫侃,不同鈦含量的活性硬銲填料合金/氧化鋁基材之紅外線快速加熱動態潤濕行為研究,國立臺灣大學機械工程學研究所碩士論文,民93(2004). [53] H.S. Ren, H.P. Xiong, B. Chen, S.J. Pang, B.Q. Chen, and L. Ye, Microstructures and Mechanical Properties of Vacuum Brazed Ti3Al/TiAl Joints Using Two Ti-based Filler Metals, Journal of Materials Science & Technology, Vol. 32(4), pp.372-380,(2016). [54]薛人豪,鈦鎳形狀記憶合金紅外線硬銲接合之研究,國立臺灣大學材料科學與工程學研究所博士論文,民95(2006). [55] Qiwen Qiu, Ying Wang, Zhenwen Yang, and Dongpo Wang, Microstructure and mechanical properties of Al2O3 ceramic and Ti6Al4V alloy joint brazed with inactive Ag-Cu and Ag-Cu-B, Journal of the European Ceramic Society, Vol. 36(8), pp.2067-2074,(2016). [56] H.S. Ren, H.P. Xiong, B. Chen, S.J. Pang, B.Q. Chen, and L. Ye, Vacuum brazing of Ti3Al-based alloy to TiAl using TiZrCuNi(Co) fillers, Journal of Materials Processing Tech., Vol. 224, pp.26-32,(2015). [57] G.B. Niu, D.P. Wang, Z.W. Yang, and Y. Wang, Microstructure and mechanical properties of Al2O3 ceramic and TiAl alloy joints brazed with Ag-Cu-Ti filler metal Ceraics International 42 pp.6924-6934,(2016). [58] S. Gambaro, F. Valenza, A. Passerone, G. Cacciamani, and M.L. Muolo, Brazing transparent YAG to Ti6Al4V: reactivity and characterization, Journal of the European Ceramic Society, Vol. 36(16), pp.4185-4196,(2016). [59] M.I. Barrena, L. Matesanz, de Salazar, and J.M. Gómez, Al2O3/Ti6Al4V diffusion bonding joints using Ag-Cu interlayer, Materials Characterization, Vol. 60(11), pp.1263-1267,(2009). [60] J. Cao, Z.J. Zheng, L.Z. Wu, J.L. Qi, Z.P. Wang, and J.C. Feng, Processing, microstructure and mechanical properties of vacuum-brazed Al2O3/Ti6Al4V joints, Materials Science & Engineering A, Vol. 535, pp.62-67,(2012). [61]薛鈞尹,吳錫侃,紅外線硬銲接合Ti-6Al-4V與異質合金之研究,國立臺灣大學材料科學與工程學研究所碩士論文,民96(2007). [62]王誠佑,利用BAg-8填料紅外線硬銲接合Ti-6Al-4V與17-4PH之研究,國立臺灣大學材料科學與工程學研究所碩士論文,民93(2004). [63]陳嘉彬,紅外線硬銲接合Ti50Ni50形狀記憶合金與316L不鏽鋼/Incoloy800合金之研究,國立臺灣大學機械工程學研究所碩士論文,民103(2014). [64] G.P. Kelkar, A.H. Carim, J. Am. Ceram. Soc.76 pp.1815,(1993). [65] Y. Dong, G. Sheng, and C. Xu, Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer, Materials and Design, 46(0):p.84-87,(2013). [66] F.J. Gil, M.P. Ginebra, J.M. Manero, and J.A. Planell, Formation of α-Widmanstatten Structure:Effect of Grain size and Cooling Rate on the Widmanstatten Morphology and on the Mechanical Properties in Ti6Al4V Alloy, Jornal of Alloys and compounds, Vol. 239, No. 1-2, pp.142-152,(2001). [67]陳柏源,β相穩定元素與熱處理製程對α+β鈦合金機械性質與顯微組織之影響,國立臺灣大學材料科學與工程學研究所博士論文,民101(2012). [68] Z.D. Sue, Quality Engineering, Quality Association of ROC, pp.7-111,(2006). [69] C.C. Lin, Journal of The Taiwan Society for Met. Heat Treat. 56, pp.40-48,(1998). [70] AMS-H-81200, Heat Treatment of Titanium and Titanium Alloys, SAE Aerospace Material Specification, SAE International, Warrendale, PA.,(2003). [71] AMS-2801B, Heat Treatment of Titanium Alloy Parts, SAE Aerospace Material Specification, SAE International, Warrendale, PA.,(2003). [72] Heat treatment, Metals Handbook, 9th ed. Vol. 4, AMS Handbook Committee, pp.763-774,(1981). [73] AMS-4965, Titanium Alloy, 6.0Al-4.0V, Solution Heat Treated and Aged, SAE Specification,(2007). [74]白賜清,工業實驗計劃法,中華民國品質學會, pp.62-68,272-278,395-404,440,442,民87(1998). [75] W.E. Ingerson, Am. Soc. Test. Mater. Proc., vol. 39, pp.1281-1291,(1939). [76] R.S. Sutton, and R.H. Heyer, ASTM Bull. 193, pp.40-41,(1953). [77] Norman E. Dowling, Mechanical Behavior of Materials, Engineering Methods for Deformation, Fracture, and Fatigue,3rd ed., pp.112,(2007). [78] G.E. Dieter, Mechanical Metallurgy, SI Metric ed., The Tension Test, True Stress at Maximum Load, McGraw-Hill Book Co. Ltd, pp. 283-285,(1998). [79] Morgan Advanced Materials, 26 Madison Road, Fairfield, NJ 07004 USA,(2017). [80] Lilla Nádai, Bálint Katona, Attila Terdik, and Eszter Bognár, Chemical etching of titanium samples, periodica polytechnica Mechanical Engineering 57/2 pp.53-57,(2013). [81]陳力俊,材料電子顯微鏡學,行政院國家科學委員會精密儀器發展中心, pp.310-318,民83(1994). [82] B. Hibbitt, P. Karlsson, and P. Sorensen, ABAQUS/standard user’s manual, Rode Island: Hibbitt, Karlsson and Sorensen Inc.,(2001). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74966 | - |
dc.description.abstract | 鈦金屬比強度比所有金屬都高,加上優越的耐蝕性及耐熱強度,適合航太及國防材料的需要,使用量仍提升中,成為重要的金屬材料。其中最常被使用的是雙相α-β型鈦合金Ti-6Al-4V,占45%鈦金屬。其真空硬銲後熱處理大多經退火,為了提升強度,本研究探討真空硬銲後熱處理固溶時效的效果,並且與真空硬銲後的退火狀態做比較。
首先利用田口方法獲得鈦合金Ti-6Al-4V固溶和時效熱處理的最佳參數條件,以期獲得最大硬度及抗拉強度,實驗結果顯示最佳製程組合為時效溫度482℃、固溶時間60分、淬火延遲時間、時效時間6小時、固溶溫度960℃、使用風扇、冷卻水靜止、氣氛乾燥空氣,固溶時效熱處理後硬度均高於HRc43以上,抗拉強度圓桿1,165MPa、板材1,082MPa以上,比退火處理硬度HRc36,抗拉強度990Mpa更好。 接著探討Ti-6Al-4V使用鈦基、銀基二種填料真空硬銲後固溶時效熱處理,鈦基填料Ti-15Cu-15Ni真空硬銲溫度和保持時間970℃x15/30/60min,硬銲後熱處理固溶和時效的銲道接合界面平均剪力強度476MPa,剪力強度範圍474±47MPa;銀基填料Ag-26.7Cu-4.5Ti真空硬銲溫度和保持時間900℃x30min、960℃x 5min/10min,銲道接合界面剪力強度平均470MPa,剪力強度範圍464.5±23.5MPa,比較文獻Ti-15Cu-15Ni真空硬銲後退火的剪力強度411Mpa,及銀基填料Ag-26.7Cu-4.5Ti真空硬銲後無熱處理的200Mpa,超過分別為16%及240%。 硬銲填料Ti-15Cu-15Ni初始成分15Cu-15Ni合併組成30wt.%,硬銲溫度保持時間若不足,銲道中心殘留連續帶狀化合物偏析組成約在共晶點,Ti-(Cu, Ni)硬銲銲道填料組成分佈如擬相圖,從本研究發現硬銲後熱處理,無論是退火或是固溶時效,都足以消除銲道中央連續帶狀介金屬化合物,βTi在共晶溫度最大固溶度12wt.%,甚至可以獲得≦6wt.%共析點或亞共析組織,無論硬銲參數是否選擇使用消除銲道中央連續帶狀介金屬化合物的條件,硬銲後熱處理的Ti-(Cu, Ni)組成範圍,必然因為稀釋於母材的關係,有朝著αTi增加,亦即Ti2(Cu, Ni)減少的擴散趨勢,因此會持續縮小範圍。硬銲後熱處理退火或固溶時效,實驗結果都是破壞於費德曼組織,也因此影響硬銲的剪力強度,其間最大的差異是在於費德曼組織和晶粒的尺度大小。 銀基填料Ag-26.7Cu-4.5Ti真空硬銲後熱處理EDS分析結果,在Ti-Cu二元相圖觀察Cu成分範圍8.64wt.%至13.22wt.%,因此銲道組成成分如同鈦基填料真空硬銲後熱處理之縮小範圍,此乃證實真空硬銲後熱處理產生均質化的結果。 | zh_TW |
dc.description.abstract | In this research, the popular alloy Ti-6Al-4V was used to investigate the optimization process parameters of heat-treatment by using Taguchi method. The hardness after aging and tensile strength was chosen as the quality characteristics. Eight controllable factors were selected including fan, solution temperature, duration time of solution treatment, protective gas, quench delay time, cooling rate, temperature and duration time of aging treatment. The experiment was performed using orthogonal array of L18(21×37). The best combination condition of process parameters was obtained after Taguchi quality analysis. The quality reproducibility was verified to be excellent via the confirmation experiments. The results showed that the hardness after aging was above HRc 43, the tensile strength of rod material all above 1,165Mpa(169ksi), and that of plate material all above 1,082Mpa(157ksi) while using the optical heat-treatment condition. They all met the specification of AMS-4965 for the quality requirement of alloy Ti-6Al-4V.
Using the optimal solution and aging treatment for Ti-6Al-4V brazed by Ti-15Cu-15Ni and Ag-26.7Cu-4.5Ti fillers, the average shear strengths of the lap-joint interface are 427 to 521MPa and 441 to 488Mpa, respectively. When compared to the reference, the shear strength has improved by 16% and 240%. And the average grain sizes of post-brazed solution and aging treatment are approximately between 6.6 μm to 8.1μm and 5.3 μm to 6.1 μm, and the average lengths of Widmanstätten structure are approximately between 37μm to 40μm and 25 μm to 35 μm with ≦ 1μm in width, which are significantly smaller than that of post-brazed annealing. Both Ti-base and Ag-base fillers specimens are examined to indicate the improving mechanism for shear strength of brazed joints is by optimal post-brazed solution and aging treatment, as it is an effective way to homogenize the microstructure of Ti-6Al-4V joint to simultaneously enhance the strength of joint braze and substrate. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T09:11:29Z (GMT). No. of bitstreams: 1 ntu-108-D97522034-1.pdf: 12492308 bytes, checksum: 8f783849947bfe67a5a53747d0cae482 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 第一章導論……………………………………………………………1
1.1鈦金屬…………………………………………………………………1 1.2鈦合金…………………………………………………………………2 1.3 Ti-6Al-4V鈦合金 ……………………………………………………4 1.4 Ti-6Al-4V鈦合金熱處理 ……………………………………………4 1.5 Ti-6Al-4V鈦合金銲接與真空硬銲 …………………………………7 1.6 Ti-6Al-4V鈦合金真空硬銲後熱處理………………………………10 1.7研究動機 ……………………………………………………………11 1.8論文架構 ……………………………………………………………12 第二章鈦合金熱處理和銲接………………………………………16 2.1鈦合金熱處理 ………………………………………………………16 2.2鈦合金真空硬銲 ……………………………………………………24 2.3介金屬化合物 ………………………………………………………29 2.4鈦基填料真空硬銲總整理 …………………………………………31 2.5銀基填料硬銲的文獻回顧 …………………………………………37 2.6品質工程 ……………………………………………………………39 2.7文獻總體回顧與研究創新 …………………………………………40 第三章實驗方法與步驟………………………………………………70 3.1 Ti-6Al-4V固溶時效熱處理實驗方法與步驟………………………70 3.2 Ti-6Al-4V真空硬銲的實驗方法與步驟……………………………75 3.3 Ti-6Al-4V真空硬銲後熱處理的實驗方法與步驟…………………79 3.4總結 …………………………………………………………………82 第四章Ti-6Al4V熱處理結果與討論…………………………………104 4.1Ti-6Al4V熱處理規範最佳參數條件………………………………104 4.2熱處理最佳參數條件的選擇及再現性……………………………105 4.3熱處理退火的抗拉強度……………………………………………107 4.4總結…………………………………………………………………108 第五章Ti-6Al-4V真空硬銲後熱處理…………………………………115 5.1鈦基填料的EDS分析………………………………………………115 5.2鈦基填料真空硬銲的EDS分析……………………………………115 5.3 Ti-6Al-4V硬銲後熱處理的剪力強度和顯微組織 ………………117 5.4總結…………………………………………………………………123 第六章Ti-6Al-4V真空硬銲後熱處理的結果與討論…………………146 6.1 Ti-6Al-4V熱處理固溶時效的最佳參數條件 ……………………146 6.2 Ti-6Al-4V硬銲後熱處理的研究成果 ……………………………146 6.3未來研究方向………………………………………………………148 參考文獻………………………………………………………………150 | |
dc.language.iso | zh-TW | |
dc.title | 鈦合金Ti-6Al-4V及真空硬銲後固溶時效熱處理的研究 | zh_TW |
dc.title | The Study of Solution and Aging Treatment of Ti-6Al-4V and its Post-Vacuum-Brazing | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王朝正,徐永富,楊智綱,賀克勤 | |
dc.subject.keyword | 鈦合金,固溶時效熱處,田口方法,箔片填料,真空硬銲,費德曼組織, | zh_TW |
dc.subject.keyword | Ti-6Al-4V,solution and aging treatment,Taguchi method,foil filler,vacuum brazing,Widmanstatten structure, | en |
dc.relation.page | 155 | |
dc.identifier.doi | 10.6342/NTU201904102 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 12.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。