Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74938
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃振康(Chen-Kang Huang)
dc.contributor.authorYuan-Chen Huen
dc.contributor.author胡元禎zh_TW
dc.date.accessioned2021-06-17T09:10:45Z-
dc.date.available2021-02-22
dc.date.copyright2021-02-22
dc.date.issued2020
dc.date.submitted2021-02-02
dc.identifier.citation1-act. 2020. Heat Pipe Calculator | Copper Water Heat Pipes [Online]. Available: https://www.1-act.com/resources/heat-pipe-calculator/ [Accessed].
Ballard, D. H. 1981. Generalizing the Hough transform to detect arbitrary shapes. Pattern recognition, 13, 111-122.
Burton, J., Sharpe, A., Van Der Veen, R., Franco, A. Nagel, S. 2012. Geometry of the vapor layer under a Leidenfrost drop. Physical review letters, 109, 074301.
Cai, C., Mudawar, I., Liu, H. Si, C. 2020. Theoretical Leidenfrost point (LFP) model for sessile droplet. International Journal of Heat and Mass Transfer, 146, 118802.
Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, 679-698.
Caswell, T. A. 2014. Dynamics of the vapor layer below a Leidenfrost drop. Physical Review E, 90, 013014.
Celsia. 2020. Celsia [Online]. Available: https://celsiainc.com/ [Accessed].
Cengel, Y. A. 2014. Heat and mass transfer, McGraw-Hill.
Clift, R., Grace, J. R. Weber, M. E. 2013. Bubbles, drops, and particles, Dover Publ.
Davies, E. 1988. A modified Hough scheme for general circle location. Pattern Recognition Letters, 7, 37-43.
Dieleman, S. Schrauwen, B. End-to-end learning for music audio. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014. IEEE, 6964-6968.
Gonzalez, R. Woods, R. 2018. Digital image processing, New York, Pearson.
Haralick, R. M. 1979. Statistical and structural approaches to texture. Proceedings of the IEEE, 67, 786-804.
Haralick, R. M., Shanmugam, K. Dinstein, I. H. 1973. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, 610-621.
He, K., Zhang, X., Ren, S. Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. 770-778.
Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A., Moore, R. C., Plakal, M., Platt, D., Saurous, R. A. Seybold, B. CNN architectures for large-scale audio classification. 2017 ieee international conference on acoustics, speech and signal processing (icassp), 2017. IEEE, 131-135.
Hough, P. V. Machine analysis of bubble chamber pictures. Conf. Proc., 1959. 554-558.
Khayal, O. 2017. heat and mass transfer fundamentals.
Krizhevsky, A., Sutskever, I. Hinton, G. E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012. 1097-1105.
Löfstedt, T., Brynolfsson, P., Asklund, T., Nyholm, T. Garpebring, A. 2019. Gray-level invariant Haralick texture features. PloS one, 14, e0212110.
Lagubeau, G., Le Merrer, M., Clanet, C. Quéré, D. 2011. Leidenfrost on a ratchet. Nature Physics, 7, 395-398.
LeCun, Y., Bottou, L., Bengio, Y. Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324.
Lee, G. C., Noh, H., Kwak, H. J., Kim, T. K., Park, H. S., Fezzaa, K. Kim, M. H. 2018. Measurement of the vapor layer under a dynamic Leidenfrost drop. International Journal of Heat and Mass Transfer, 124, 1163-1171.
Liang, G. Mudawar, I. 2017. Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 106, 103-126.
Ma, X. Burton, J. C. 2018. Self-organized oscillations of Leidenfrost drops. arXiv preprint arXiv:1802.06136.
Ma, X., Liétor-Santos, J.-J. Burton, J. C. 2017. Star-shaped oscillations of Leidenfrost drops. Physical Review Fluids, 2, 031602.
Maji, S. Bruchez, M. P. 2012. Inferring biological structures from super-resolution single molecule images using generative models. PloS one, 7, e36973.
Marr, D. Hildreth, E. 1980. Theory of edge detection. Proceedings of the Royal Society of London. Series B. Biological Sciences, 207, 187-217.
Miyamoto, E. Merryman, T. 2005. Fast calculation of Haralick texture features. Human computer interaction institute, Carnegie Mellon University, Pittsburgh, USA. Japanese restaurant office.
Munich, E. R. r. 2020. Research Reactor High Resolution Stock Photography and Images - Alamy [Online]. Available: https://www.alamy.com/stock-photo/research-reactor.html [Accessed 2020].
Niu, Z., Zhou, M., Wang, L., Gao, X. Hua, G. Ordinal regression with multiple output cnn for age estimation. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. 4920-4928.
Nuclear_Power_contributors. 2020. Natural Convection Boiling - Onset of Nucleate Boiling [Online]. Nuclear Power. Available: https://www.nuclear-power.net/nuclear-engineering/heat-transfer/boiling-and-condensation/natural-convection-boiling-onset-of-nucleate-boiling/ [Accessed 2020].
Paul, G., Das, P. K. Manna, I. 2015. Droplet oscillation and pattern formation during Leidenfrost phenomenon. Experimental Thermal and Fluid Science, 60, 346-353.
Quéré, D. 2013. Leidenfrost dynamics. Annual Review of Fluid Mechanics, 45, 197-215.
Salamon, J. Bello, J. P. 2017. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Processing Letters, 24, 279-283.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision, 2017. 618-626.
Seo, S. B. Bang, I. C. 2019. Acoustic analysis on the dynamic motion of vapor-liquid interface for the identification of boiling regime and critical heat flux. International Journal of Heat and Mass Transfer, 131, 1138-1146.
Siammetalwork. 2020. Siammetalwork.com [Online]. Available: https://www.siammetalwork.com/Machine%20List/589847c4641fde0001e773c2/langEN [Accessed].
Simonyan, K. Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Sinha, K. N. R., Ranjan, D., Raza, M. Q., Kumar, N., Kaner, S., Thakur, A. Raj, R. 2019. In-situ acoustic detection of critical heat flux for controlling thermal runaway in boiling systems. International Journal of Heat and Mass Transfer, 138, 135-143.
Sobac, B., Rednikov, A., Dorbolo, S. Colinet, P. 2014. Leidenfrost effect: Accurate drop shape modeling and refined scaling laws. Physical Review E, 90, 053011.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. Wojna, Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. 2818-2826.
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. Torralba, A. Learning deep features for discriminative localization. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. 2921-2929.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74938-
dc.description.abstract沸騰曲線的研究與繪製,對沸騰熱傳的研究與相關的應用至關重要,沸騰熱傳因為其高潛熱與高熱對流係數,常常被應用在加熱或散熱上,然而沸騰曲線的研究往往有準確度不高、不確定性高與研究時間人力成本高的現象,因此本研究以傳統型的表面沸騰實驗設計為出發,使用水平的熱金屬表面搭配抽風系統,建構並優化其系統模擬、自動化實驗流程並加入影像與聲響分析,以減少實驗的時間人力成本,並降低實驗的不確定性。本研究以SOLIDWORKS Flow Simulation對實驗設備的溫度與風場進行模擬,並依實驗量測與模擬結果優化實驗設計,使用電腦、LabVIEW使用者介面、注射幫浦與PID控制系統自動化實驗流程,同時以影像與音訊分析判斷液滴沸騰的沸騰狀態、移動、大小變化等等,並引入卷積神經網路深度學習以提升其效果。完成表面沸騰實驗系統-以抽風維持懸浮液滴之建置與優化,確立了熱金屬板與壓克力圓管之間距15 mm為最佳,鼓風機之工作電壓15 V為最佳。以圓形偵測演算法,自動追蹤上百次萊氏現象沸騰液滴的移動與大小變化,透過液滴半徑與時間變化之斜率,計算熱通量,繪製去離子水與95%酒精在6061鋁合金上之沸騰曲線,並得到去離子水的體積參數為2.75,95%酒精的體積參數為3.19。最後嘗試以聲響分析沸騰液滴,以ResNet CNN模型,分辨出沸騰與環境音,其準確率達9成以上。未來期望繪製更多條不同液體與加熱表面之沸騰曲線,並使用此方法輔助凹式表面沸騰實驗系統或是池沸騰實驗。zh_TW
dc.description.abstractThe research of the boiling curve is an important component in thermal science and plays a key role in heat transfer. However, the traditional methods of the boiling curve plotting were uncertain and time-consuming. Therefore, the purpose of this research was to establish the automatic surface boiling system by using image analysis, audio signal analysis, and CFD simulation. In this study, the SOLIDWORKS Flow Simulation was used to estimate the temperature and the wind velocity distribution in the system, and the results were used to optimize the system. For the purpose of system automation, the PID temperature control system, syringe pump, webcam, microphone, and computer were integrated by LabVIEW. Besides, the image and the audio signal analysis were used to determine the evaporation time, boiling situation, location, and size of the boiling liquid. Furthermore, CNN deep learning models were used to enhance the performance of the audio signal analysis.
The CFD models of the system were established. After the optimization, the distance between the heated test surface and the acrylic pipe was set to be 15 mm. Moreover, the working voltage of the blowers was set to be 15 V. In this study, hough circle detection was used and successfully detected the boiling water on the heat plate. By tracking the boiling water, the heat flux of a certain heated surface temperature was calculated by the boiling water radius changing rate, and the boiling curves of deionized water and ethanol were plotted. Furthermore, the research found out that the volume index of deionized water was 2.75 and the volume index of ethanol was 3.19. The ResNet CNN model was used to classify the audio signal of noise and boiling water, and the accuracy of the results was more than 90%. There is abundant space for further progress in analyzing the boiling curve of different liquids and different heated test surfaces.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:10:45Z (GMT). No. of bitstreams: 1
U0001-3101202116541800.pdf: 6056274 bytes, checksum: c1fefc037c6757bd673635bac4d11633 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1前言 1
1.2研究動機 4
1.2.1 沸騰曲線研究實驗種類 4
1.2.2 沸騰曲線研究相關技術 6
1.2.3 自動化沸騰曲線研究需求 7
1.3研究目的 8
第二章 文獻探討 9
2.1 自動化沸騰曲線相關研究 9
2.2 邊緣偵測 11
2.2.1 Canny 邊緣檢測 11
2.3 霍夫轉換(Hough transform) 12
2.3.1 圓形霍夫轉換 12
2.4 影像紋理分析 13
2.5 卷積神經網路 13
2.5.1 VGG 14
2.5.2 ResNet 15
2.6 有序迴歸(Ordinal Regression) 16
2.6.1 深度學習有序迴歸 16
2.7 卷積神經網路結果可視化 16
2.7.1 CAM 16
2.7.2 Grad-CAM 17
2.8 音訊辨識 18
2.8.1以卷積神經網路以及聲譜圖進行音訊分類 18
2.8.2 深度學習用於音訊分類之資料強化 19
2.8.3 以卷積神經網路以及原始音訊進行音訊分類 20
2.9 簡諧運動(Simple Harmonic Motion)與複雜諧運動(Complex Harmonic Motion) 21
2.10 萊氏現象沸騰液滴形狀 25
2.11 萊氏現象沸騰液滴變形振盪 27
2.12 萊氏現象沸騰液滴在表面的運動與複雜度探討 30
2.13 萊氏現象沸騰液滴在熱表面的半徑變化 31
第三章 研究方法 33
3.1實驗儀器與設備 33
3.1.1 實驗靜音箱 33
3.1.2 熱金屬板 34
3.1.3 溫度控制與監控系統 36
3.1.4 加熱底座 38
3.1.5 網路攝影機與收音麥克風 39
3.1.6 注射幫浦系統或微量吸管 40
3.1.7 電腦與自動化操作系統 41
3.1.8 抽風系統 42
3.1.9 降噪系統 44
3.2 抽風系統調整與優化 45
3.2.1環形風場維持發生萊氏現象的液滴與理論軌跡 45
3.3 液滴影像追蹤與辨識 47
3.3.1 未發生萊氏現象之液滴追蹤與辨識 47
3.3.2 已發生萊氏現象之懸浮液滴追蹤與辨識 48
3.3.3 已發生萊氏現象之懸浮液滴半徑變化分析 50
3.4 液滴初始接觸熱表面聲響分析 51
3.4.1訓練環境建置 51
3.4.2訓練資料 51
3.4.3模型結構 52
3.4.4模型結果解釋 52
第四章 結果與討論 53
4.1 設備測試結果 53
4.1.1 熱金屬板溫度測試 53
4.1.2 熱金屬板表面粗糙度量測結果 54
4.1.3 熱金屬板表面溫度以熱影像儀量測結果 54
4.1.4 抽風系統極限測試 54
4.2 抽風系統優化結果 55
4.2.1萊氏現象之懸浮液滴維持測試 55
4.2.2抽風系統風速量測 56
4.2.3 抽風系統模擬 57
4.3 液滴影像追蹤與辨識結果 63
4.3.1 即時分析懸浮液滴蒸發時間與表面沸騰實驗限制 63
4.3.2 影像後分析與已發生萊氏現象之懸浮液滴追蹤 65
4.3.3 影像後分析與已發生萊氏現象之懸浮液滴半徑變化分析 68
4.4沸騰液滴聲響分辨與迴歸結果 76
第五章 結論與建議 79
5.1 結論 79
5.2 未來展望與建議 81
第六章 參考文獻 82
dc.language.isozh-TW
dc.subject沸騰曲線zh_TW
dc.subject影像分析zh_TW
dc.subject模擬zh_TW
dc.subject音訊分析zh_TW
dc.subject深度學習zh_TW
dc.subject表面沸騰zh_TW
dc.subjectDeep Learningen
dc.subjectImage Analysisen
dc.subjectCFD Simulationen
dc.subjectSurface Boilingen
dc.subjectAudio Signal analysisen
dc.subjectBoiling Curveen
dc.title液滴沸騰影像處理與聲響深度學習分析zh_TW
dc.titleOn the Image and Audio Signal Processing with
Deep Learning for Droplet Boiling
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee孫珍理(Chen-Li Sun),李明蒼 (Ming-Tsang Lee)
dc.subject.keyword表面沸騰,深度學習,音訊分析,沸騰曲線,影像分析,模擬,zh_TW
dc.subject.keywordSurface Boiling,CFD Simulation,Image Analysis,Boiling Curve,Audio Signal analysis,Deep Learning,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202100295
dc.rights.note有償授權
dc.date.accepted2021-02-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-3101202116541800.pdf
  未授權公開取用
5.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved