請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7491完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周瑞仁 | |
| dc.contributor.author | Chiu-Wang Tseng | en |
| dc.contributor.author | 曾秋旺 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:44:49Z | - |
| dc.date.available | 2021-08-16 | |
| dc.date.available | 2021-05-19T17:44:49Z | - |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | 李淑惠。2014。運用文字探勘技術於口碑分析之研究。 碩士論文。台北:東吳大學資訊管理學系。
Bengio, Y., P. Simard, and P. Frasconi. 1994. 'Learning Long-Term Dependencies with Gradient Descent is Difficult.' IEEE Transactions on Neural Networks 5(2): 157-166. Chen, G., C. Wang, F. Liu, F. Wang, S. Li and M. Huang. 2016. 'Estimate of Public Environment-emotional Index Based on Micro-Blog Data.' 2016 IEEE International Conference Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 854-858. Chengdu, China. Dutt, A., M. A. Ismail, and T. Herawan. 2017. 'A Systematic Review on Educational Data Mining.' IEEE Access 5: 15991-16005. Hochreiter, S., and J. Schmidhuber. 1997. 'Long Short-term Memory.' Neural Computation 9(8): 1735-1780. Irsoy, O., and C. Cardie. 2014. 'Opinion Mining with Deep Recurrent Neural Networks.' Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 720-728. Doha, Qatar. Jieba. 2013. 'Chinese Text Segmentation.' Available at https://github.com/fxsjy/jieba. Accessed on Aug. 30, 2017. Lian, J., F. Zhang, X. Xie and G. Sun. 2017. 'Restaurant Survival Analysis with Heterogeneous Information.' Proceedings of the 26th International Conference on World Wide Web Companion, 993-1002. Perth, Australia. Liu, P., S. Joty, and H. Meng. 2015. 'Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embeddings.' Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1433-1443. Lisbon, Portugal. Liu, B. 2012. 'Sentiment Analysis and Opinion Mining.' Synthesis Lectures on Human Language Technologies 5(1): 1-167. Luong, M. T., H. Pham, and C. D. Manning. 2015. 'Effective Approaches to Attention-based Neural Machine Translation.' arXiv preprint arXiv:1508.04025. Marrese-Taylor, E., J. A. Balazs, and Y. Matsuo. 2017. 'Mining Fine-grained Opinions on Closed Captions of YouTube Videos with an Attention-RNN.' arXiv preprint arXiv:1708.02420. Mikolov, T., W. Yih, and G. Zweig. 2013. 'Linguistic Regularities in Continuous Space Word Representations.' Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 746-751. Atlanta, U.S.A. Olah, C. 2015. 'Understanding LSTM Networks'. Available at http://colah.github.io/posts/2015-08-Unders-tanding-LSTMs/. Accessed on Nov. 10, 2017. Ouyang, S., C. Li, and X. Li. 2016. 'A Peek into the Future: Predicting the Popularity of Online Videos.' IEEE Access 4: 3026-3033. Peng, H., E. Cambria, and A. Hussain. 2017. 'A Review of Sentiment Analysis Research in Chinese Language.' Cognitive Computation 9(4): 423-435. Ranjan, J., and K. Malik. 2007. 'Effective Educational Process: a Data-mining Approach.' Vine 37(4): 502-515. Romero, C., and S. Ventura. 2010. 'Educational Data Mining: a Review of the State of the Art.' IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40(6): 601-618. Schuster, M., and K. K. Paliwal. 1997. 'Bidirectional Recurrent Neural Networks.' IEEE Transactions on Signal Processing 45(11): 2673-2681. SnowNLP. 2013. 'Simplifed Chinese Text Processing. ' Available at https://github.com/isnowfy/snownlp. Accessed on Oct. 18, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7491 | - |
| dc.description.abstract | 本研究與國立宜蘭大學校務研究辦公室合作,分析教學問卷文字意見,將分析結果應用於輔助優良教師遴選。優良老師遴選需耗費遴選委員大量時間進行書面資料審查,因此本研究開發一套系統,進行教學問卷文字意見的分析,提供遴選委員決策之參考。
教學問卷屬於教育性的資料,本研究依教育資料探勘 (Educational Data Mining) 的流程進行分析;在文字探勘中,文字情緒分析是一種常見的文字資料量化方式,可以分析文字作者的情緒傾向,本研究以此量化教學問卷文字意見,將學生對教師的評論情緒傾向提供給遴選委員參考。本研究以不考慮時間序列因素的中文文字情緒分析套件SnowNLP與類神經網路、考慮時間序列因素的循環神經網路、長短期記憶循環神經網路及專注機制循環神經網路分別分析文字情緒,並比較其效能。 分析結果顯示,考慮時間序列因素分析文字情緒的效果較好;長短期記憶單元與專注機制皆能有效改善傳統循環神經網路在長序列任務的效果。本研究最後選擇專注長短期記憶循環神經網路為文字情緒分類器,其於正面情緒的分辨率達97%,負面情緒達87%。並利用其分析流程,架設一個分析伺服器,將其模組化,以便於整合至學校的系統中。 | zh_TW |
| dc.description.abstract | The study was conducted in collaboration with the Office of Institutional Research (IR) at National Ilan University (NIU) in Taiwan to analyze textual opinions found in teaching evaluation questionnaires and apply the analysis results to assisting in the selection of outstanding teaching faculty members. The selection of outstanding teachers requires that selection committee members spend a large amount of time reviewing written data. Therefore, the study develops a set of systems for the analysis of textual opinions in teaching evaluation questionnaires, providing reference materials for the selection committee.
The teaching evaluation questionnaire is a form of educational data. The study analyzes this data using educational data mining. In text mining, text sentiment analysis is a common textual data quantification method that can analyze the sentiment tendency of a text author. The study uses text sentiment analysis to quantify the students’ textual opinions and to provide the selection committee with the sentiment tendency of students’ comments on teaching faculty members. We analyze text sentiment separately for different classifiers by using the Chinese text sentiment analysis kit SnowNLP. We compare the efficacy of classifiers that do not take time series factors into consideration (naïve Bayes, fully connected neural network) to those that do (Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) RNN, and attention RNN). We found that classifiers that consider time series factors are more effective at analyzing text sentiment. Further, adding LSTM cells and an attention mechanism to a tradition RNN classifier effectively improved its efficacy on long-sequence tasks. As a result, we chose the attention LSTM RNN classifier—with a positive sentiment recognition rate of 97% and a negative sentiments recognition rate of 87%—as our preferred text sentiment classifier. Finally, we used an analysis process to set up an analytics server that will be modularized to facilitate its integration into the systems of different schools. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:44:49Z (GMT). No. of bitstreams: 1 ntu-107-R05631018-1.pdf: 3243766 bytes, checksum: 6e8cb1cd6c3f6b807ef981238f227184 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 Acknowledgements i
摘要 ii Abstract iii 圖目錄 vii 表目錄 ix 第1章 緒論 Introduction 1 第2章 文獻探討 Literature Review 3 2.1 教育資料探勘 (Educational Data Mining) 3 2.2 文字情緒分析 (Text Sentiment Analysis) 5 第3章 材料與方法 Materials and Methods 7 3.1 教學問卷內容 8 3.2 資料前處理 11 3.3 文字情緒分析 12 3.3.1 樸素貝氏分類器 (Naïve Bayes Classifier) 12 3.3.2 全連接型神經網路分類器 14 3.3.3 循環神經網路分類器及專注機制 18 3.4 效能評估 24 3.4.1 F1 score 25 3.4.2 AUC-ROC 27 第4章 結果與討論 Results and Discussion 30 4.1 資料前處理結果 30 4.2 文字情緒分析結果 32 4.2.1 時間序列因素的影響 33 4.2.2 專注機制的影響 34 4.2.3 長短期記憶單元的影響 34 4.2.4 正面情緒與負面情緒資料量差異的影響 34 4.2.5 教學評鑑值與文字情緒分析結果 37 4.2.6 中性情緒資料分析結果 41 4.3 教師分析API 43 第5章 結論 Conclusion 46 參考文獻 References 47 | |
| dc.language.iso | zh-TW | |
| dc.title | 教學問卷文字意見探勘應用於優良教師之遴選 | zh_TW |
| dc.title | Text Mining and Analysis of Student Surveys in Selection of Outstanding Teaching Faculty Member | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡芸琤,楊屹沛,陳倩瑜 | |
| dc.subject.keyword | 優良教師遴選,教學問卷,教育資料探勘,文字情緒分析,循環神經網路,長短期記憶,專注機制, | zh_TW |
| dc.subject.keyword | Selection of outstanding teachers,Teaching evaluation questionnaire,Educational data mining,Text sentiment analysis,Recurrent neural network,Long short-term memory,Attention, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU201803024 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 3.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
