請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7490完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡忠怡 | |
| dc.contributor.author | Yin-Chen Chou | en |
| dc.contributor.author | 周映辰 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:44:48Z | - |
| dc.date.available | 2021-09-06 | |
| dc.date.available | 2021-05-19T17:44:48Z | - |
| dc.date.copyright | 2018-09-06 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | 1 Pui, C. H. & Evans, W. E. Treatment of acute lymphoblastic leukemia. New England Journal of Medicine 354, 166-178 (2006).
2 Pui, C. H., Relling, M. V. & Downing, J. R. Acute lymphoblastic leukemia. New England Journal of Medicine 350, 1535-1548 (2004). 3 Pui, C. H., Robison, L. L. & Look, A. T. Acute lymphoblastic leukaemia. The Lancet 371, 1030-1043 (2008). 4 Nigro, L. L. Biology of childhood acute lymphoblastic leukemia. Journal of Pediatric Hematology/Oncology 35, 245-252 (2013). 5 中華民國兒童癌症基金會. 兒童白血病. (2007). 6 長庚紀念醫院. 認識成人急性白血病 (Acute leukemia) (長庚紀念醫院衛教手冊). 7 Faderl, S., O'brien, S., Pui, C. H., Stock, W., Wetzler, M., Hoelzer, D. & Kantarjian, H. M. Adult acute lymphoblastic leukemia. Cancer 116, 1165-1176 (2010). 8 Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. The Lancet 381, 1943-1955 (2013). 9 衛生福利部國民健康署. 中華民國104年癌症登記報告. (2017). 10 Harvey, R. C., Mullighan, C. G., Chen, I.-M., Wharton, W., Mikhail, F. M., Carroll, A. J., Kang, H., Liu, W., Dobbin, K. K. & Smith, M. A. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115, 5312-5321 (2010). 11 Pui, C. H. & Jeha, S. New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nature Reviews Drug Discovery 6, 149-165 (2007). 12 Bentz, M., Cabot, G., Moos, M., Speicher, M. R., Ganser, A., Lichter, P. & Dohner, H. Detection of chimeric BCR-ABL genes on bone marrow samples and blood smears in chronic myeloid and acute lymphoblastic leukemia by in situ hybridization. Blood 83, 1922-1928 (1994). 13 Carpiuc, K. T., Stephens, J. M., Botteman, M. F., Feng, W. & Hay, J. W. A review of the clinical and economic outcomes of imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia. Expert Opinion on Pharmacotherapy 8, 2775-2787 (2007). 14 Kurzrock, R., Gutterman, J. U. & Talpaz, M. The molecular genetics of Philadelphia chromosome–positive leukemias. New England Journal of Medicine 319, 990-998 (1988). 15 Nowell, P. C. A minute chromosome n human chronic granualocytic leukemia. Science 132, 1497-1501 (1960). 16 Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290-293 (1973). 17 Sawyers, C. L. Chronic myeloid leukemia. New England Journal of Medicine 340, 1330-1340 (1999). 18 Kantarjian, H. M., Talpaz, M., Dhingra, K., Estey, E., Keating, M. J., Ku, S., Trujillo, J., Huh, Y., Stass, S. & Kurzrock, R. Significance of the P210 versus P190 molecular abnormalities in adults with Philadelphia chromosome-positive acute leukemia. Blood 78, 2411-2418 (1991). 19 Kurzrock, R., Kantarjian, H. M., Druker, B. J. & Talpaz, M. Philadelphia chromosome positive leukemias: from basic mechanisms to molecular therapeutics. Annals of Internal Medicine 138, 819-830 (2003). 20 Li, S., Ilaria, R. L., Million, R. P., Daley, G. Q. & Van Etten, R. A. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia–like syndrome in mice but have different lymphoid leukemogenic activity. Journal of Experimental Medicine 189, 1399-1412 (1999). 21 Mizuta, S., Matsuo, K., Yagasaki, F., Yujiri, T., Hatta, Y., Kimura, Y., Ueda, Y., Kanamori, H., Usui, N. & Akiyama, H. Pre-transplant imatinib-based therapy improves the outcome of allogeneic hematopoietic stem cell transplantation for BCR–ABL-positive acute lymphoblastic leukemia. Leukemia 25, 41-47 (2011). 22 Fielding, A. K. Current treatment of Philadelphia chromosome–positive acute lymphoblastic leukemia. Haematologica 95, 8-12 (2010). 23 Ko, B. S., Tang, J. L., Tsai, W., Chen, Y. C., Wang, C. H., Sheng, M. C., Lin, D. T., Lin, K. H. & Tien, H. F. Philadelphia chromosome-positive acute lymphoblastic leukemia in Taiwan. Annals of Hematology 80, 510-515 (2001). 24 Fielding, A. K. How I treat Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood 116, 3409-3417 (2010). 25 Mullighan, C. G., Miller, C. B., Radtke, I., Phillips, L. A., Dalton, J., Ma, J., White, D., Hughes, T. P., Le Beau, M. M. & Pui, C. H. BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110-114 (2008). 26 Lindsey, R. H., Bender, R. P. & Osheroff, N. Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase IIα: 1, 4-hydroquinone is a topoisomerase II poison. Chemical Research in Toxicology 18, 761-770 (2005). 27 Regev, L., Wu, M., Zlotolow, R. & Brautbar, N. Hydroquinone, a benzene metabolite, and leukemia: a case report and review of the literature. Toxicology and Industrial Health 28, 64-73 (2012). 28 Siew, E. L., Chan, K. M., Williams, G. T., Ross, D. & Inayat-Hussain, S. H. Protection of hydroquinone-induced apoptosis by downregulation of Fau is mediated by NQO1. Free Radical Biology and Medicine 53, 1616-1624 (2012). 29 Inayat Hussain, S. H. & Ross, D. Intrinsic pathway of hydroquinone induced apoptosis occurs via both caspase-dependent and caspase-independent mechanisms. Chemical Research in Toxicology 18, 420-427 (2005). 30 Wu, P. L., Lin, S. B., Huang, C. P. & Chiou, R. Y. Antioxidative and Cytotoxic Compounds Extracted from the Sap of Rhus succedanea. Journal of Natural Products 65, 1719-1721 (2002). 31 Huang, C. P., Fang, W. H., Lin, L. I., Chiou, R. Y., Kan, L. S., Chi, N. H., Chen, Y. R., Lin, T. Y. & Lin, S. B. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning. Toxicology and Applied Pharmacology 227, 331-338 (2008). 32 Lin, T. Y., Huang, C. P., Au, L. C., Chang, Y. W., Hu, C. Y. & Lin, S. B. A cysteine-reactive alkyl hydroquinone modifies topoisomerase IIα, enhances DNA breakage, and induces apoptosis in cancer cells. Chemical Research in Toxicology 25, 2340-2351 (2012). 33 高意雯. Master Thesis : The effects of the botanical alkyl hydroquinone derivative HQ17(3) on acute lymphoblastic leukemia cell lines, RS(4;11) harboring t(4;11) chromosome translocation. (2011). 34 張耀仁. Master Thesis : Inhibitory effects of the botanical alkyl hydroquinone derivative HQ17(3) on acute lymphoblastic leukemia SUP-B15 cells harboring Philadelphia chromosome. (2013). 35 陳佳瑋. Master Thesis : Inhibitory effects of the botanical alkyl hydroquinone derivative HQ17(3) on acute lymphoblastic leukemia cell lines. (2016). 36 Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. & Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology 39, 44-84 (2007). 37 Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Reviews Drug Discovery 8, 579-591 (2009). 38 Fleury, C., Mignotte, B. & Vayssière, J. L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84, 131-141 (2002). 39 Sidoti-de Fraisse, C., Rincheval, V., Risler, Y., Mignotte, B. & Vayssière, J. L. TNF-α activates at least two apoptotic signaling cascades. Oncogene 17, 1639-1651 (1998). 40 Berghe, T. V., Vanlangenakker, N., Parthoens, E., Deckers, W., Devos, M., Festjens, N., Guerin, C., Brunk, U., Declercq, W. & Vandenabeele, P. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death and Differentiation 17, 922-930 (2010). 41 Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434-6451 (2008). 42 Yu, L., Wan, F., Dutta, S., Welsh, S., Liu, Z. H., Freundt, E., Baehrecke, E. H. & Lenardo, M. Autophagic programmed cell death by selective catalase degradation. Proceedings of the National Academy of Sciences 103, 4952-4957 (2006). 43 Kreuzaler, P. & Watson, C. J. Killing a cancer: what are the alternatives? Nature Reviews Cancer 12, 411-424 (2012). 44 Galluzzi, L., Vitale, I., Abrams, J., Alnemri, E., Baehrecke, E., Blagosklonny, M., Dawson, T., Dawson, V., El-Deiry, W. & Fulda, S. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation 19, 107-120 (2012). 45 Elmore, S. Apoptosis: a review of programmed cell death. Toxicologic Pathology 35, 495-516 (2007). 46 Chaitanya, G. V., Alexander, J. S. & Babu, P. P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Communication and Signaling 8, 31 (2010). 47 Galluzzi, L., Bravo-San Pedro, J., Vitale, I., Aaronson, S., Abrams, J., Adam, D., Alnemri, E., Altucci, L., Andrews, D. & Annicchiarico-Petruzzelli, M. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation 22, 58-73 (2015). 48 Cassimeris, L., Plopper, G. & Lingappa, V. R. Lewin's cells. (Jones & Bartlett Publishers, 2011). 49 Hegde, R., Srinivasula, S. M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A. S. & Fernandes-Alnemri, T. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. Journal of Biological Chemistry 277, 432-438 (2002). 50 Bröker, L. E., Kruyt, F. A. & Giaccone, G. Cell death independent of caspases: a review. Clinical Cancer Research 11, 3155-3162 (2005). 51 Kroemer, G. & Martin, S. J. Caspase-independent cell death. Nature Medicine 11, 725-730 (2005). 52 Cregan, S. P., Dawson, V. L. & Slack, R. S. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23, 2785-2796 (2004). 53 Yuste, V., Moubarak, R., Delettre, C., Bras, M., Sancho, P., Robert, N., d'Alayer, J. & Susin, S. Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death and Differentiation 12, 1445-1448 (2005). 54 Badugu, R., Garcia, M., Bondada, V., Joshi, A. & Geddes, J. W. N terminus of calpain 1 is a mitochondrial targeting sequence. Journal of Biological Chemistry 283, 3409-3417 (2008). 55 Norberg, E., Gogvadze, V., Vakifahmetoglu, H., Orrenius, S. & Zhivotovsky, B. Oxidative modification sensitizes mitochondrial apoptosis-inducing factor to calpain-mediated processing. Free Radical Biology and Medicine 48, 791-797 (2010). 56 Ding, W. X. & Yin, X. M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry 393, 547-564 (2012). 57 Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27-42 (2008). 58 Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular cell biology 8, 741-752 (2007). 59 Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A. & Yuan, J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology 1, 112-119 (2005). 60 Vandenabeele, P., Galluzzi, L., Berghe, T. V. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews Molecular Cell Biology 11, 700-714 (2010). 61 Flamment, M., Hajduch, E., Ferré, P. & Foufelle, F. New insights into ER stress-induced insulin resistance. Trends in Endocrinology and Metabolism 23, 381-390 (2012). 62 Høyer-Hansen, M. & Jäättelä, M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death and Differentiation 14, 1576-1582 (2007). 63 Masouleh, B. K., Chevet, E., Panse, J., Jost, E., O’Dwyer, M., Bruemmendorf, T. H. & Samali, A. Drugging the unfolded protein response in acute leukemias. Journal of Hematology & Oncology 8, 87 (2015). 64 Sano, R. & Reed, J. C. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta 1833, 3460-3470 (2013). 65 Uemura, A., Oku, M., Mori, K. & Yoshida, H. Unconventional splicing of XBP1 mRNA occurs in the cytoplasm during the mammalian unfolded protein response. Journal of Cell Science 122, 2877-2886 (2009). 66 Li, G., Mongillo, M., Chin, K. T., Harding, H., Ron, D., Marks, A. R. & Tabas, I. Role of ERO1-α–mediated stimulation of inositol 1, 4, 5-triphosphate receptor activity in endoplasmic reticulum stress–induced apoptosis. Journal of Cell Biology 186, 783-792 (2009). 67 Vannuvel, K., Renard, P., Raes, M. & Arnould, T. Functional and morphological impact of ER stress on mitochondria. Journal of Cellular Physiology 228, 1802-1818 (2013). 68 Görlach, A., Bertram, K., Hudecova, S. & Krizanova, O. Calcium and ROS: a mutual interplay. Redox Biology 6, 260-271 (2015). 69 van der Bliek, A. M., Shen, Q. & Kawajiri, S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harbor Perspectives in Biology 5, a011072 (2013). 70 Youle, R. J. & Van Der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062-1065 (2012). 71 Leboucher, G. P., Tsai, Y. C., Yang, M., Shaw, K. C., Zhou, M., Veenstra, T. D., Glickman, M. H. & Weissman, A. M. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Molecular Cell 47, 547-557 (2012). 72 Li, J., Qi, W., Chen, G., Feng, D., Liu, J., Ma, B., Zhou, C., Mu, C., Zhang, W., Chen, Q., Zhu, Y. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy 11, 1216-1229 (2015). 73 Griparic, L., Kanazawa, T. & van der Bliek, A. M. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. Journal of Cell Biology 178, 757-764 (2007). 74 Ehses, S., Raschke, I., Mancuso, G., Bernacchia, A., Geimer, S., Tondera, D., Martinou, J. C., Westermann, B., Rugarli, E. I. & Langer, T. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. Journal of Cell Biology 187, 1023-1036 (2009). 75 Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. & Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. Journal of Biological Chemistry 282, 11521-11529 (2007). 76 Cribbs, J. T. & Strack, S. Reversible phosphorylation of Drp1 by cyclic AMP‐dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Reports 8, 939-944 (2007). 77 Chang, C. R. & Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin‐related protein Drp1. Annals of the New York Academy of Sciences 1201, 34-39 (2010). 78 Chou, C. H., Lin, C. C., Yang, M. C., Wei, C. C., Liao, H. D., Lin, R. C., Tu, W. Y., Kao, T. C., Hsu, C. M. & Cheng, J. T. GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. PLoS One 7, e49112 (2012). 79 Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. Nature Reviews Molecular Cell Biology 13, 607-625 (2012). 80 Friedman, J. R., Lackner, L. L., West, M., DiBenedetto, J. R., Nunnari, J. & Voeltz, G. K. ER tubules mark sites of mitochondrial division. Science 334, 358-362 (2011). 81 Choi, S. Y., Huang, P., Jenkins, G. M., Chan, D. C., Schiller, J. & Frohman, M. A. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nature Cell Biology 8, 1255-1262 (2006). 82 Huang, H., Gao, Q., Peng, X., Choi, S.-Y., Sarma, K., Ren, H., Morris, A. J. & Frohman, M. A. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Developmental Cell 20, 376-387 (2011). 83 Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L. & Youle, R. J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell 1, 515-525 (2001). 84 Cereghetti, G., Stangherlin, A., De Brito, O. M., Chang, C., Blackstone, C., Bernardi, P. & Scorrano, L. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proceedings of the National Academy of Sciences 105, 15803-15808 (2008). 85 Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T. & Korsmeyer, S. J. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135-139 (2003). 86 Gomes, L. C., Di Benedetto, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology 13, 589-598 (2011). 87 Tondera, D., Grandemange, S., Jourdain, A., Karbowski, M., Mattenberger, Y., Herzig, S., Da Cruz, S., Clerc, P., Raschke, I. & Merkwirth, C. SLP‐2 is required for stress‐induced mitochondrial hyperfusion. EMBO Journal 28, 1589-1600 (2009). 88 Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology 12, 9-14 (2011). 89 Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Developmental Cell 17, 98-109 (2009). 90 Zhang, J., Randall, M. S., Loyd, M. R., Dorsey, F. C., Kundu, M., Cleveland, J. L. & Ney, P. A. Mitochondrial clearance is regulated by Atg7-dependent and-independent mechanisms during reticulocyte maturation. Blood 114, 157-164 (2009). 91 Bingol, B. & Sheng, M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biology and Medicine 100, 210-222 (2016). 92 Palikaras, K. & Tavernarakis, N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Experimental Gerontology 56, 182-188 (2014). 93 Leclerc, G. M., Zheng, S., Leclerc, G. J., DeSalvo, J., Swords, R. T. & Barredo, J. C. The NEDD8-activating enzyme inhibitor pevonedistat activates the eIF2α and mTOR pathways inducing UPR-mediated cell death in acute lymphoblastic leukemia. Leukemia Research 50, 1-10 (2016). 94 Sattler, M., Verma, S., Shrikhande, G., Byrne, C. H., Pride, Y. B., Winkler, T., Greenfield, E. A., Salgia, R. & Griffin, J. D. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. Journal of Biological Chemistry 275, 24273-24278 (2000). 95 Gómez-Sánchez, R., Gegg, M. E., Bravo-San Pedro, J. M., Niso-Santano, M., Alvarez-Erviti, L., Pizarro-Estrella, E., Gutiérrez-Martín, Y., Alvarez-Barrientos, A., Fuentes, J. M. & González-Polo, R. A. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiology of Disease 62, 426-440 (2014). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7490 | - |
| dc.description.abstract | 人類第9與第22號染色體轉位產生的費城染色體(Philadelphia chromosome, Ph)會導致具致癌性的BCR-ABL融合蛋白產生; BCR-ABL為持續活化的酪氨酸激酶,會啟動與細胞增生、存活及自我更新相關的訊息傳遞路徑,導致細胞轉型癌化。帶有費城染色體的急性淋巴性白血病(Ph+ ALL)具高惡性度且不易治癒,即使以高強度化療搭配tyrosine kinase inhibitor (TKI)抑制BCR-ABL活性,仍有高比例的患者會對藥物產生抗性而導致疾病復發,因此針對這類高風險(high-risk)患者發展有效的替代輔助治療方針,仍是目前ALL研究上的重要課題之一。
10’(Z),13’(E),15’(E)-heptadecatrienyl hydroquinone (HQ17(3)) 是自台灣漆樹的漆液中所萃取出的天然小分子化合物,目前已知HQ17(3)在多種腫瘤細胞中會透過抑制DNA拓樸異構酶II (DNA topoisomerase II)的活性引起DNA斷裂,並對細胞造成氧化壓力導致依賴半胱胺酸蛋白酶介導的細胞凋亡,對人類周邊血單核球細胞則不具明顯毒性。我們之前研究發現,以低濃度(1-3 µM)的HQ17(3)處理帶有費城染色體的急性淋巴性白血病細胞株SUP-B15,在24小時之下即有顯著毒殺效果,因此希望藉由研究HQ17(3)在SUP-B15細胞的毒殺模式了解這類細胞可能帶有的特殊弱點,以發展輔助Ph+ ALL的治療策略。 我們先前的研究已知HQ17(3)處理下SUP-B15細胞發生不依賴半胱胺酸蛋白酶介導的細胞死亡,其中包含了活性氧分子堆積及粒線體膜電位喪失及DNA斷裂,另外也發現HQ17(3)會誘導細胞發生內質網壓力及細胞自嗜現象。在此研究中,我們發現HQ17(3)可能透過內質網壓力引發粒線體內鈣離子濃度上升,導致粒線體內膜蛋白apoptosis-inducing factor (AIF)切割並轉移至細胞核而造成不依賴半胱胺酸水解酶介導的細胞死亡。然而以PD150606抑制AIF的切割/核轉移僅小部分減緩HQ17(3)引起的細胞死亡,若以鈣離子螯合劑抑制粒線體內鈣離子濃度上升能更有效挽救細胞免於死亡,說明SUP-B15細胞在HQ17(3)處理下粒線體鈣離子的堆積可能誘發其他引起細胞死亡的機制。我們發現HQ17(3)除了引起粒線體內活性氧分子堆積、膜電位喪失等粒線體損傷,也會造成粒線體融合相關蛋白Opa1的切割與與Mfn1/2降解。利用粒線體螢光染色發現HQ17(3)引起的細胞死亡會伴隨粒線體出現片段化以及大量減少的現象,顯示HQ17(3)可能會促使粒線體進行分裂並啟動粒線體自嗜清除機制(mitophagy),以免疫螢光染色看到自嗜體標誌LC3-II與粒線體complex IV訊號重疊的現象,可確定HQ17(3)增進粒線體自嗜的發生。HQ17(3)造成的粒線體損傷與清除現象可透過與鈣離子螯合劑共處理降低粒線體鈣離子堆積而得到緩解,顯示HQ17(3)所造成粒線體鈣離子增加導致粒線體損傷與自嗜。總合以上,我們認為HQ17(3)在帶有費城染色體的preB-急性淋巴性白血病 SUP-B15細胞會透過尚未明瞭的機制引發內質網壓力,導致粒線體內鈣離子的累積,除了引起AIF分子切割與核轉位,也會致使粒線體活性氧分子上升,導致粒線體損傷及引發粒線體自嗜,最終導致粒線體大量減少細胞死亡。透過實驗數據與過去文獻探討,也暗示Ph+ ALL易受內質網壓力及粒線體壓力影響而導致細胞死亡發生,並期望後續研究上得以提供未來在高風險ALL患者治療替代方針的一個新方向。 | zh_TW |
| dc.description.abstract | Reciprocal t(9;22) BCR-ABL translocation gives rise to Philadelphia (Ph) chromosome and results in production of chimeric BCR-ABL fusion protein, which activates multiple signaling pathways that promote cell proliferation, survival and self-renewal. Ph+-acute lymphoblastic leukemia presents very poor clinical outcomes irrespective of the highest dose chemotherapy combined with tyrosine kinase inhibitors. Therefore, it’s important to explore new agents act as alternative/supplemental strategies in treatment of this high-risk disease. The 10’(Z),13’(E),15’(E) -heptadecatrienyl hydroquinone (HQ17(3)) is a small natural molecule extracted from the sup of Rhus succedanea. HQ17(3) was found to be a DNA topoisomerase II⍺ poison that cause DNA damage, induced oxidative stress and caspase-dependent apoptosis in various types of cancer cells, but didn’t affect normal peripheral blood leukocytes. We found HQ17(3) has significant cytotoxic effect on the Ph+ B-ALL SUP-B15 cells within 24 hours at micromolar concentration. HQ17(3) induced ROS production, loss of mitochondrial membrane potential, and DNA fragmentation in SUP-B15 cells, accompanied by signs of autophagy and ER stress, followed by caspase-independent cell death. Here, we found HQ17(3) induced mitochondrial Ca2+ ([Ca2+m]) elevation, leading to apoptosis-inducing factor (AIF) cleavage and nuclear translocation. However, inhibition of AIF cleavage by calpain-I inhibitor PD150606 only slightly attenuated the HQ17(3)-induced cell death. Furthermore, Ca2+ chelator Bapta-AM could prevent [Ca2+m] overload and rescue cell death more effectively, indicating [Ca2+m] participate in other mechanisms implicated in cell death. HQ17(3) treatment resulted in increased mitochondrial superoxide, and loss of mitochondrial membrane potential. Degradation of mitochondrial fusion protein Mfn1/2 and Opa1 was noted, while MitoView stain showed significant loss of mitochondrial mass preceded cell death, indicated mitochondria might undergo fission followed by mitophagy, the selective degradation of mitochondria by autophagy. Mitophagy was revealed by COX IV and LC3B co-localization in immune-fluorescence stain. Furthermore, Ca2+-chelator attenuated HQ17(3)-induced mitochondrial ROS elevation, Opa1 cleavage and mitophagy occurence, indicated HQ17(3)-induced mitochondrial damage features are consequences of [Ca2+m] overload and related to cell death. In conclusion, HQ17(3) induces ER stress by yet-defined mechanism in Ph+ preB-ALL SUP-B15 cells, leads to [Ca2+m] overload, elevated superoxide and mitochondrial damage, followed by mitophagy, and cell death ensue. Our finding also suggests that Ph+ ALL cells is vulnerable to ER stress or mitochondrial stress, may provide a new approach to study alternative strategies for high-risk ALL treatment in future. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:44:48Z (GMT). No. of bitstreams: 1 ntu-107-R05424009-1.pdf: 2952013 bytes, checksum: 48125bc8cefb66cb9a96ac4810815cbc (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 - I
中文摘要 -II Abstract - IV 縮寫表 - VI 第一章 緒論 - 1 一、急性淋巴性白血病 - 1 1. 急性淋巴性白血病的症狀 - 1 2. 急性淋巴性白血病的診斷 - 2 3. 急性淋巴性白血病的治療 - 3 4. 急性淋巴性白血病的不良預後因子 - 5 5. 費城染色體陽姓急性淋巴性白血病 (Ph+ ALL) - 5 6. 費城染色體 - 6 7. 費城染色體陽性急性淋巴性白血病治療 - 6 8. TKI在Ph+ ALL治療上所面臨的問題 - 7 二、對苯二酚衍生物HQ17(3)簡介 - 8 1. 對苯二酚代謝與誘發細胞死亡型態 - 8 2. 對苯二酚衍生物相關文獻探討 - 9 三、活性氧分子 reaction oxygen species (ROS) - 10 1. 活性氧分子ROS介紹 - 10 2. ROS與細胞死亡 - 12 四、計畫性細胞死亡 (Programmed cell death, PCD) - 13 1. 細胞凋亡 (apoptosis, type I) - 13 2. 細胞自嗜 (autophagy, type II) - 16 3. 細胞壞死 (necroptosis, type III) - 18 五、Unfolded protein response (UPR)-內質網壓力(ER stress) - 19 六、粒線體恆定 - 21 1. 粒線體動態平衡 - 21 2. 粒線體自嗜 - 24 七、Preliminary data - 27 第二章 研究目的與實驗設計 - 29 一、研究目的 - 29 1. 研究動機 - 29 2. 研究目的 - 30 二、實驗設計 - 30 第三章 材料與方法 - 31 一、實驗材料 - 31 1. 細胞株 - 31 2. 試藥/劑、抗體、儀器清單 - 31 3. 各式溶液及其配方 - 36 (1) 細胞培養液 - 36 (2) 流式細胞儀相關實驗 - 36 (3) 萃取細胞蛋白質 - 36 (4) 鈉十二烷基硫酸鹽聚丙烯胺凝膠電泳與膠體轉漬 - 37 (5) 西方墨點法 - 39 (6) 免疫螢光染色 - 40 三、實驗方法 - 41 1. 細胞解凍、培養與計數 - 41 2. 細胞膜磷脂質 phosphatidylserine (PS)外翻與細胞膜完整性分析 - 41 3. 粒線體ROS偵測 - 42 4. 細胞內鈣離子偵測 - 42 5. 粒線體膜電位偵測 - 43 (1) 以螢光顯微鏡觀察 - 43 (2) 以流式細胞儀分析 - 43 6. 粒線體形態與總量分析 - 43 (1) 以螢光顯微鏡觀察 - 43 (2) 以流式細胞儀分析 - 44 7. 免疫螢光染色 - 44 8. 西方墨點法 - 45 (1) 蛋白質萃取 - 45 (2) 蛋白質定量與電泳樣品準備 - 45 (3) 納十二烷基硫酸鹽聚丙烯胺凝膠電泳與膠體轉漬 - 46 (4) 阻斷非特異性結合與免疫染色 - 46 第四章 結果 - 47 一、HQ17(3)誘粒線體Ca2+增加與AIF translocation與細胞死亡有關 - 47 1. HQ17(3)造成mitochondrial Ca2+增加 - 47 2. HQ17(3)造成AIF nuclear translocation並與mitochondrial Ca2+增加有關 - 48 3. AIF的切割不是導致細胞死亡的主因 - 48 4. 粒線體 Ca2+增加調控其他死亡路徑的發生 - 49 二、HQ17(3)誘導的粒線體Ca2+增加導致粒線體損傷與自嗜 - 49 1. HQ17(3)導致粒線體損傷情形發生 - 50 (1) 粒線體ROS上升 - 50 (2) 粒線體膜電位喪失 - 50 (3) 粒線體融合蛋白減少 - 51 2. HQ17(3)導致粒線體片段化與總量減少 - 52 3. HQ17(3)造成粒線體自嗜(mitophagy)發生 - 53 4. 粒線體Ca2+的累積參與HQ17(3)所造成的粒線體損傷 - 53 (1) 粒線體Ca2+參與粒線體ROS的堆積 - 54 (2) 粒線體Ca2+與ROS參與HQ17(3)誘導的融合蛋白Opa1的切割 - 54 (3) 粒線體自嗜為HQ17(3)誘導的粒線體Ca2+增加所導致 - 55 第五章 討論 - 56 參考文獻 - 62 圖與表 - 71 附錄 - 86 圖目錄 圖一、HQ17(3)處理5小時即造成SUP-B15細胞粒線體Ca2+ overload,且可透過Ca2+螯合劑Bapta-AM抑制 - 72 圖二、HQ17(3)造成SUP-B15細胞Apoptosis-inducing factor (AIF)進入到細胞核 - 73 圖三、Calpain inhibitor PD150606部分抑制HQ17(3)誘導的SUP-B15細胞死亡 - 74 圖四、Bapta-AM明顯減緩HQ17(3)誘導的SUP-B15細胞死亡 - 75 圖五、HQ17(3)八小時處理造成SUP-B15細胞粒線體ROS堆積 - 76 圖六、HQ17(3)處理八小時造成SUP-B15細胞粒線體膜電位喪失 - 77 圖七、HQ17(3)導致SUP-B15粒線體損傷與融合蛋白降低 - 78 圖八、HQ17(3)導致細胞粒線體形態改變與粒線體總量減少 - 79 圖九、HQ17(3)造成SUP-B15細胞粒線體自嗜 - 80 圖十、Bapta-AM抑制HQ17(3)導致的粒線體ROS堆積 - 81 圖十一、ROS清除劑GSH或Bapta-AM均可緩解HQ17(3)導致的Opa1蛋白切割情形 - 82 圖十二、Bapta-AM緩解HQ17(3)所造成的粒線體總量減少 - 83 圖十三、Bapta-AM可抑制HQ17(3)造成SUP-B15細胞粒線體自嗜 - 84 圖十四、HQ17(3)造成Ph+ B-ALL SUP-B15細胞株死亡的可能機轉示意圖 - 85 附錄目錄 附錄一、ALL 基因變異分佈圖 - 87 附錄二、BCR-ABL 融合蛋白生成示意圖 - 88 附錄三、苯(benzene)的代謝 - 89 附錄四、caspase dependent/independent cell death - 90 附錄五、AIF processing 過程 - 91 附錄六、non-selective autophagy進程 - 92 附錄七、由RIP1所誘導的apoptosis或necroptosis - 93 附錄八、UPR pathway路徑 - 94 附錄九、粒線體動態平衡 - 95 附錄十、粒線體自嗜(Mitophagy)分子機制 - 96 附錄十一、ER stress誘導粒線體壓力 - 97 附錄十二、HQ17(3)誘導SUP-B15細胞ER stress發生 - 98 附錄十三、Ca2+螯合劑Bapta-AM對SUP-B15細胞的毒性測試 - 99 附錄十四、Calpain-I抑制劑PD150606對SUP-B15細胞的毒性測試 - 100 | |
| dc.language.iso | zh-TW | |
| dc.title | 分析植物對苯二酚衍生物HQ17(3)對費城染色體陽性之急性淋巴性白血病細胞株SUP-B15的毒殺機制 | zh_TW |
| dc.title | Cytotoxic Effects Imposed by the Botanical Alkyl Hydroquinone Derivative HQ17(3) on Philadelphia Chromosome Positive ALL SUP-B15 Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林亮音,郭靜穎,歐大諒,郭遠燁 | |
| dc.subject.keyword | 帶有費城染色體的急性淋巴性白血病,SUP-B15,HQ17(3),粒線體損傷,細胞死亡, | zh_TW |
| dc.subject.keyword | Ph+ acute lymphoblastic leukemia,SUP-B15,HQ17(3),mitochondria damage,cell death, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201802853 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 2.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
