Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7489
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平
dc.contributor.authorYi-Ching Chengen
dc.contributor.author鄭奕晴zh_TW
dc.date.accessioned2021-05-19T17:44:46Z-
dc.date.available2021-08-14
dc.date.available2021-05-19T17:44:46Z-
dc.date.copyright2018-08-14
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citationAzure, M. (2018). Evaluate Model. Retrieved from https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/evaluate-model
Bierman, P., Lewis, M., Ostendorf, B., & Tanner, J. (2011). A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecological Indicators, 11(1), 103-114.
Chau, K., & Chen, W. (2001). A fifth generation numerical modelling system in coastal zone. Applied Mathematical Modelling, 25(10), 887-900.
Chau, K. W. (2006). A review on integration of artificial intelligence into water quality modelling. Mar Pollut Bull, 52(7), 726-733.
Chou, J.-S., Ho, C.-C., & Hoang, H.-S. (2018). Determining quality of water in reservoir using machine learning. Ecological Informatics, 44, 57-75.
Couto, C., Vicente, H., Machado, J., Abelha, A., & Neves, J. (2012). Water quality modeling using artificial intelligence-based tools. International Journal of Design & Nature and Ecodynamics, 7(3), 300-309.
Hecht-Nielsen, R. (1987). Kolmogorov's mapping neural network existence theorem. Paper presented at the Proceedings of the IEEE International Conference on Neural Networks III.
Heddam, S., & Kisi, O. (2017). Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Environ Sci Pollut Res Int, 24(20), 16702-16724.
Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and psychological measurement, 34(1), 111-117.
Kassambara, A., & Mundt, F. (2017). Package ‘factoextra,’. R topics documented, 75.
Liu, C.-W., Lin, K.-H., & Kuo, Y.-M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of The Total Environment, 313(1-3), 77-89.
Noori, R., Sabahi, M. S., Karbassi, A. R., Baghvand, A., & Taati Zadeh, H. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination, 260(1-3), 129-136.
Nosrati, K., & Van Den Eeckhaut, M. (2012). Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Environmental Earth Sciences, 65(1), 331-344.
Olsen, R. L., Chappell, R. W., & Loftis, J. C. (2012). Water quality sample collection, data treatment and results presentation for principal components analysis--literature review and Illinois River Watershed case study. Water Res, 46(9), 3110-3122.
Pagano, M., & Gauvreau, K. (2018). Principles of biostatistics: Chapman and Hall/CRC.
Palani, S., Liong, S. Y., & Tkalich, P. (2008). An ANN application for water quality forecasting. Mar Pollut Bull, 56(9), 1586-1597.
Papaioannou, A., Mavridou, A., Hadjichristodoulou, C., Papastergiou, P., Pappa, O., Dovriki, E., & Rigas, I. (2010). Application of multivariate statistical methods for groundwater physicochemical and biological quality assessment in the context of public health. Environmental monitoring and assessment, 170(1-4), 87-97.
Revelle, W. R. (2017). psych: Procedures for personality and psychological research.
Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22(4), 464-475.
Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)--a case study. Water Res, 38(18), 3980-3992.
Vega, M., Pardo, R., Barrado, E., & Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water research, 32(12), 3581-3592.
Winkler, D., Haltmeier, M., Kleidorfer, M., Rauch, W., & Tscheikner-Gratl, F. (2018). Pipe failure modelling for water distribution networks using boosted decision trees. Structure and Infrastructure Engineering, 1-10.
王嶽斌. (2015). 整合多變量方法評估水體及底泥品質時空特性之研究.
台灣省水污染防治所. (1975). 台灣河川水質年報(中華民國六十五年).
正昌. (2005). 多變量分析方法: 統計軟體應用: 五南圖書出版股份有限公司.
行政院環境保護署. (2011). 老街溪污染總量管制模式評估計畫專案工作計畫.
行政院環境保護署. (2016). 2016年環境水質年報定稿.
行政院環境保護署. (2018a). 水質保護網. Retrieved from https://water.epa.gov.tw/River_laochieh.aspx
行政院環境保護署. (2018b). 全國環境水質監測資訊網. Retrieved from https://wq.epa.gov.tw/Code/Theme/Overall.aspx
行政院環境保護署. (2018c). 列管污染源資料查詢系統. Retrieved from https://prtr.epa.gov.tw/
行政院環境保護署. (2018d). 環境資源資料庫. Retrieved from https://erdb.epa.gov.tw/DataRepository/PollutionProtection/AllWaterPollutantEmissions.aspx
吳孟育. (2005). 印刷電路板業含銅廢液銅化合物之回收與轉化. 崑山科技大學環境工程研究所學位論文, 1-107.
林倩如. (2006). 環境品質調查資料空間變異分析之探討. 臺灣大學生物環境系統工程學研究所學位論文, 1-149.
林清山. (1991). 多變量分析統計法. 台北市: 東華.
桃園縣政府環保局. (2011). 老街溪流域水質改善暨整治策略.
桃園縣政府環境保護局. (2015). 河川水質監測項目說明. Retrieved from https://www.tydep.gov.tw/tydep/static/river/main4.html
張祚楨. (2013). 河川水質管理之水質指標評估. 淡江大學水資源及環境工程學系碩士班學位論文, 1-65.
傅粹馨. (2002). 主成份分析和共同因素分析相關議題之探究. 教育與社會研究.
楊于嫺. (2014). 都市河川復育之研究-以老街溪為例. 成功大學水利及海洋工程學系學位論文, 1-83.
經濟部工業局. (1993). 行業製程減廢及污染防治技術-半導體業介紹.
劉應興. (1997). 應用線性迴歸模型. 台北市: 華泰文化事業股份有限公司.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7489-
dc.description.abstract本研究目的在於探索長期的水質監測數據,使用多變量分析及機器學習等資料探勘方式,探索河水中污染物隨時間的變化及彼此的關聯。蒐集桃園市老街溪流域2002至2016年共計15年期間水質監測數據,河川主流長約37公里,分析範圍包括主流老街溪及支流大坑缺溪所設置之7點測站,每月各蒐集10至32項水質參數。
  所產生的龐大水質資料集(總共約21,194個觀測值)將以多變量分析方法中的主成分分析、因素分析及群集分析方法進行水質評估,除了水質特徵識別外,還加入了時間軸,探討水質隨時間之變化。經主成分及因素分析,萃取出的6個因素可解釋資料集70 %變異量,因素依序為複合污染物、降雨沖刷、工業排水污染(半導體業、印刷電路板業等)及工業常見金屬材料等污染來源;群集分析將7個測站分類為3個群組,分別為支流,上游群組及下游群組,高度污染的支流匯入主流後,影響中下游水質,導致上下游群組組成逐年變化。
  機器學習亦可用於水質監測集的資料探勘上,本研究為判斷水中銅濃度超標與否及評估河川污染程度指標(RPI),同時利用決策森林模型及類神經網路模型等兩種技術,針對上述議題分別建立模型。在判斷水中銅濃度超標與否的議題上,決策森林模型之正確率較高(0.83),同時可得知懸浮固體、導電度及點位因素是判斷超標與否的重要決策指標;而在評估RPI數值上,同樣是決策森林模型的評估誤差較小,平均絕對誤差及平均絕對誤差百分比分別為0.352及0.087,並可得知生化需氧量及氨氮為重要的決策資訊。
zh_TW
dc.description.abstractThis study investigated the water quality of river basin from a long-term monitoring dataset using data mining techniques, such as multivariate statistical and machine learning techniques. Water quality of Lao-Jie River basin was monitored at seven different sites from mainstream and tributary Da-Keng-Que creek, with 10-32 water quality parameters collected every month for 15 years (2002–2016).
Multivariate statistical techniques, such as Principal Components Analysis (PCA), Factor Analysis (FA) and Cluster Analysis (CA), were applied to evaluate the water quality of the large size monitoring dataset (21,194 observations). PCA/FA identified six factors that explains 70 % of the variance in the dataset. These six factors indicated the source of the pollutions might originate from complex pollutions, rain erosion, industrial wastewater effluent (like semiconductor industry and printed circuit board industry), and industrial metal pollution. Furthermore, CA classified seven sampling sites into three groups: tributary, upstream groups, and downstream groups, while members in upstream and downstream groups change by year due to highly polluted tributary.
Machine learning can also be used for data exploration in water quality monitoring datasets. This study addressed two water quality assessment issues, the concentration of copper and the river pollution index (RPI), by using both decision forest and neural network techniques respectively. In terms of the concentration of copper, decision forest has a higher accuracy (0.83), and elucidates that suspended solids, electrical conductivity, and sampling sites are important in determining whether the copper concentration in the water is standard-exceeded or not. On the other hand, for the assessment of the RPI, decision forest model also has a lower mean absolute error and mean absolute percentage error (0.352 and 0.087), and BOD as well as ammonia play important roles in decision-making information.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:44:46Z (GMT). No. of bitstreams: 1
ntu-107-R04541210-1.pdf: 3237870 bytes, checksum: dbb510e42d20823c39bf2e4afab2375c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄 I
圖目錄 III
表目錄 IV
第一章 緒論 1
1.1 研究動機及目的 1
1.2 研究架構 4
第二章 文獻回顧 5
2.1 桃園老街溪背景資訊 5
2.2 多變量分析案例 14
2.2.1 主成分分析/因素分析 14
2.2.2 群集分析 16
2.3 機器學習應用於水質評估 18
2.3.1 利用機器學習方法進行分類 18
2.3.2 利用機器學習方法進行數值判斷 19
第三章 分析材料與方法 21
3.1 研究方法流程 21
3.2 資料蒐集及前處理 22
3.2.1 資料蒐集 22
3.2.2 資料前處理 28
3.3 資料分析方法 29
3.3.1 描述統計(盒方圖) 29
3.3.2 主成分分析/因素分析 29
3.3.3 群集分析 33
3.4 機器學習模型建置 34
3.4.1 模型運作流程介紹 34
3.4.2 模型效果評估 39
3.4.3 模型建置平台 42
第四章 分析結果 47
4.1 老街溪水質資訊 48
4.1.1 河川水質單變項描述統計 48
4.1.2 河川污染程度指標變化趨勢 52
4.1.3 河川水質金屬濃度變化趨勢 56
4.2 多變量分析 59
4.2.1 主成分分析/因素分析 59
4.2.2 群集分析 69
4.3 機器學習 72
4.3.1 以每月例行量測水質參數判斷水中銅濃度超標可行性 72
4.3.2 以COD代替BOD判斷水質污染指標(RPI)之可行性 79
第五章 結論與建議 83
第六章 參考文獻 87
dc.language.isozh-TW
dc.title應用多變量分析及機器學習技術於老街溪水質評估zh_TW
dc.titleAssessment of Lao-Jie River Water Quality Using Multivariate Statistics and Machine Learning Techniquesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭獻文,黃郁慈
dc.subject.keyword水質監測,水質評估,多變量分析,主成分分析,因素分析,群集分析,機器學習,決策森林,類神經網路,zh_TW
dc.subject.keywordWater Monitoring,Water Quality Assessment,Multivariate Statistical Techniques,Principal Components Analysis,Factor Analysis,Cluster Analysis,Machine Learning,Decision Forest,Neural Network,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201803135
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf3.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved