請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74890完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華 | |
| dc.contributor.author | Chia-Hung Liu | en |
| dc.contributor.author | 劉家宏 | zh_TW |
| dc.date.accessioned | 2021-06-17T09:09:39Z | - |
| dc.date.available | 2025-03-12 | |
| dc.date.copyright | 2020-03-12 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-10-14 | |
| dc.identifier.citation | 1. Sattler, K.D., Handbook of Nanophysics, Principles and Methods. 2010. CRC Press.
2. Bhushan, B., Handbook of Nanotechnology. 2004. Springer. 3. Albanese, A., P.S. Tang, and W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng, 2012. 14: p. 1-16. 4. Kaur, M., et al., Nanotechnology: A review. International Journal of Applied Research, 2015. 2(1). 5. Sowjanya, K., A Review on Current Advancements in Nanotechnology. Research & Reviews: Journal of Medical and Health Sciences, 2015. 4(3): p. 1-12. 6. Vishwakarma, K., O.P. Vishwakarma, and M. Bhatele. A Brief Review on Role of Nanotechnology in Medical Sciences. 2013. India: Springer India publisher . Available from AISCOBE(2012) : p. 53-63. 7. Simonis, F. and S. Schilthuizen, Nanotechnology Innovation Opportunities For Tomorrow’s Defence. 2006. TNO Science & Industry ; p. 1-112. 8. Salata, O., Applications of nanoparticles in biology and medicine. J Nanobiotechnology, 2004. 2(1): p. 3. 9. Rana, S. and P.T. Kalaichelvan, Ecotoxicity of nanoparticles. ISRN Toxicol, 2013. 2013:p. 574648. 10. Laurent, S., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev, 2008. 108(6): p. 2064-110. 11. Mohanraj, V.J. and Y. Chen, Nanoparticles – A Review. Tropical Journal of Pharmaceutical Research, 2005. 5(1): p. 561-573. 12. Anu Mary, E. and M.P. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 2017. 263(3):p. 032019. 13. Roduner, E., Size matters: why nanomaterials are different. Chem Soc Rev, 2006. 35(7): p. 583-92. 14. Borm, P.J., et al., The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol, 2006. 3:p. 11. 15. Dhawan, A. and V. Sharma, Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem, 2010. 398(2): p. 589-605. 16. Iavicoli, I., et al., Opportunities and challenges of nanotechnology in the green economy. Environ Health, 2014. 13:p. 78. 17. Haynes, C.L., The emerging field of nanotoxicology. Anal Bioanal Chem, 2010. 398(2): p. 587-8. 18. Donaldson, K. and C.A. Poland, Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol, 2013. 24(4): p. 724-34. 19. Gao, G.Y., et al., [Current status and prospect of translational medicine in nanotechnology]. Yao Xue Xue Bao, 2015. 50(8): p. 919-24. 20. Hutchison, J.E.,et al., Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano, 2008. 2(3): p. 395-402. 21. Di Bona, K.R., et al., Short- and Long-Term Effects of Prenatal Exposure to Iron Oxide Nanoparticles: Influence of Surface Charge and Dose on Developmental and Reproductive Toxicity. Int J Mol Sci, 2015. 16(12): p. 30251-68. 22. Manke, A., L. Wang, and Y. Rojanasakul, Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int, 2013. 2013:p. 942916 23. Sarkar, A., M. Ghosh, and P.C. Sil, Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J Nanosci Nanotechnol, 2014. 14(1): p. 730-43. 24. Knaapen, A.M., et al., Inhaled particles and lung cancer. Part A: Mechanisms. Int J Cancer, 2004. 109(6): p. 799-809. 25. Risom, L., P. Moller, and S. Loft, Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res, 2005. 592(1-2): p. 119-37. 26. Eom, H.J. and J. Choi, Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett, 2009. 187(2): p. 77-83. 27. Avalos, A., et al., Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol, 2014. 34(4): p. 413-23. 28. Misawa, M. and J. Takahashi, Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations. Nanomedicine, 2011. 7(5): p. 604-14. 29. Park, E.J. and K. Park, Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett, 2009. 184(1): p. 18-25. 30. Wang, J., et al., Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol In Vitro, 2011. 25(1): p. 242-50. 31. Zhornik, E.V., et al., [ROS induction and structural modification in human lymphocyte membrane under the influence of carbon nanotubes]. Biofizika, 2012. 57(3): p. 446-53. 32. Singh, N., et al., NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 2009. 30(23-24): p. 3891-914. 33. Alarifi, S., D. Ali, and S. Alkahtani, Nanoalumina induces apoptosis by impairing antioxidant enzyme systems in human hepatocarcinoma cells. Int J Nanomedicine, 2015. 10: p. 3751-60. 34. Sliwinska, A., et al., Genotoxicity and cytotoxicity of ZnO and Al2O3 nanoparticles. Toxicol Mech Methods, 2015. 25(3): p. 176-83. 35. Li, J.J., et al., Gold Nanoparticles Induce Oxidative Damage in Lung Fibroblasts In Vitro. Advanced Materials, 2008. 20(1): p. 138-142. 36. Bhattacharya, K., et al., Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle and fibre toxicology, 2009. 6: p. 17-17. 37. Lin, W., et al., Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. Journal of Nanoparticle Research, 2009. 11(1): p. 25-39. 38. Karlsson, H.L., et al., Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chemical Research in Toxicology, 2008. 21(9): p. 1726-1732. 39. Lane, D.P., Cancer. p53, guardian of the genome. Nature, 1992. 358(6381): p. 15-6. 40. Choi, A.O., et al., Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med (Berl), 2008. 86(3): p. 291-302. 41. Jeng, H.A. and J. Swanson, Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2006. 41(12): p. 2699-711. 42. Ahamed, M., et al., Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol, 2010. 242(3): p. 263-9. 43. Huang, Y.W., C.H. Wu, and R.S. Aronstam, Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies. Materials (Basel), 2010. 3(10): p. 4842-4859. 44. Baktur, R., H. Patel, and S. Kwon, Effect of exposure conditions on SWCNT-induced inflammatory response in human alveolar epithelial cells. Toxicol In Vitro, 2011. 25(5): p. 1153-60. 45. Crouzier, D., et al., Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology, 2010. 272(1-3): p. 39-45. 46. Qu, C., et al., Carbon nanotubes provoke inflammation by inducing the pro-inflammatory genes IL-1beta and IL-6. Gene, 2012. 493(1): p. 9-12. 47. Turabekova, M., et al., Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale, 2014. 6(7): p. 3488-3495. 48. Dobrovolskaia, M.A., et al., Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm, 2008. 5(4): p. 487-95. 49. Chanan-Khan, A., et al., Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol, 2003. 14(9): p. 1430-7. 50. Szebeni, J., et al., Animal Models of Complement-Mediated Hypersensitivity Reactions to Liposomes and Other Lipid-Based Nanoparticles. Journal of Liposome Research, 2007. 17(2): p. 107-117. 51. Zolnik, B.S., et al., Nanoparticles and the immune system. Endocrinology, 2010. 151(2): p. 458-65. 52. Reddy, S.T., et al., Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol, 2007. 25(10): p. 1159-64. 53. Fifis, T., et al., Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol, 2004. 173(5): p. 3148-54. 54. Mottram, P.L., et al., Type 1 and 2 Immunity Following Vaccination Is Influenced by Nanoparticle Size: Formulation of a Model Vaccine for Respiratory Syncytial Virus. Molecular Pharmaceutics, 2007. 4(1): p. 73-84. 55. Wallach, D., T.B. Kang, and A. Kovalenko, Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol, 2014. 14(1): p. 51-9. 56. Li, J.J., et al., Nanoparticle-induced pulmonary toxicity. Exp Biol Med (Maywood), 2010. 235(9): p. 1025-33. 57. Allen, R.G. and M. Tresini, Oxidative stress and gene regulation. Free Radic Biol Med, 2000. 28(3): p. 463-99. 58. Byrne, J.D. and J.A. Baugh, The significance of nanoparticles in particle-induced pulmonary fibrosis. Mcgill J Med, 2008. 11(1): p. 43-50. 59. Monteiller, C., et al., The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med, 2007. 64(9): p. 609-15. 60. Pujalte, I., et al., Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol, 2011. 8: p. 10. 61. Wu, W., et al., Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environmental health perspectives, 2010. 118(7): p. 982-987. 62. Kahn, E., et al., Iron nanoparticles increase 7-ketocholesterol-induced cell death, inflammation, and oxidation on murine cardiac HL1-NB cells. Int J Nanomedicine, 2010. 5: p. 185-95. 63. Nygaard, U.C., et al., Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci, 2009. 109(1): p. 113-23. 64. Torres, M. and H.J. Forman, Redox signaling and the MAP kinase pathways. Biofactors, 2003. 17(1-4): p. 287-96. 65. Park, E.J., et al., Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett, 2008. 180(3): p. 222-9. 66. Lim, D., et al., Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry, 2012. 31(3): p. 585-592. 67. Liu, X. and J. Sun, Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways. Biomaterials, 2010. 31(32): p. 8198-8209. 68. Pacurari, M., et al., Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect, 2008. 116(9): p. 1211-7. 69. Roy, R., et al., Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling. Toxicol In Vitro, 2014. 28(3): p. 457-67. 70. Duan, J., et al., Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int J Nanomedicine, 2014. 9: p. 5131-41. 71. Ferey, G., et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005. 309(5743): p. 2040-2. 72. Zhao, T., et al., High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). Dalton Trans, 2015. 44(38): p. 16791-801. 73. Hong, D., et al., Porous chromium terephthalate mil-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis. Adv. Funct. Mater., 2009. 19:p. 1537-1552. 74. Horcajada, P., et al., Metal–organic frameworks as efficient materials for drug delivery. Angewandte Chemie International Edition, 2006. 45: p. 5974-5978. 75. Sun, C.-Y., et al., Metal-organic frameworks as potential drug delivery systems. Expert Opinion on Drug Delivery, 2013. 10(1): p. 89-101. 76. Férey, G., et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area. 2005, 309 (5743): p. 2040-2042. 77. Henschel, A., et al., Catalytic properties of MIL-101. 2008, 35: p. 4192-4194. 78. Hwang, Y. K., et al., Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101. 2009, 358 (2): p. 249-253. 79. Kim, K. S., et al., Fabrication of an Efficient Light-Scattering Functionalized Photoanode Using Periodically Aligned ZnO Hemisphere Crystals for Dye-Sensitized Solar Cells. Adv. Mater. 2012, 24 (6): p. 792 80. Maksimchuk, N. V., et al., Catalysis, Heterogeneous Selective Oxidation of Alkenes to α, β‐Unsaturated Ketones over Coordination Polymer MIL‐101. 2010, 352 (17): p. 2943-2948. 81. Maksimchuk, N. V., et al., Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. 2012, 48 (54): p. 6812-6814. 82. Llewellyn, P. L., et al., High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks mil-100 and mil-101. 2008, 24 (14): p. 7245-7250. 83. Zhang, Z., et al., Adsorption equilibrium and kinetics of CO2 on chromium terephthalate MIL-101. 2011, 25 (2) : p. 835-842. 84. Barceloux, Donald G.; Barceloux, Donald. Chromium. Clinical Toxicology. 1999. 37 (2) : p. 173–194. 85. Dayan, A. D.; Paine, A. J.. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Human & Experimental Toxicology. 2001.20 (9): p.439–451. 86. Katz, Sidney A.; Salem, H., The toxicology of chromium with respect to its chemical speciation: A review. Journal of Applied Toxicology. 1992. 13 (3): p. 217–224. 87. WHO Guidelines on Drinking-Water Quality (PDF). WHO.int. World Health Organisation. Section 12.30: Chromium. 88. Bogden, John D.; Klevay, Leslie M., eds. Trace Elements and Minerals in the Elderly § Chromium. Clinical Nutrition of the Essential Trace Elements and Minerals: The Guide for Health Professionals. 2000. Springer Science+Business Media 89. Chromium § Toxicity. Micronutrient Information Center. Oregon State University. Retrieved 2018-04-15. 90. Chromium § Drug interactions. Micronutrient Information Center. Oregon State University. Retrieved 2018-04-15. 91. Eastmond, David A.; MacGregor, JT; Slesinski, RS. Trivalent Chromium: Assessing the Genotoxic Risk of an Essential Trace Element and Widely Used Human and Animal Nutritional Supplement. Critical Reviews in Toxicology. 2008. 38 (3): p. 173–190. 92. Evans HJ, Neary GJ, Williamson FS. The relative biological efficiency of single doses of fast neutrons and gamma-rays on Vicia faba roots and the effect of oxygen: Part II. Chromosome damage: the production of micronuclei. Int J Rad Biol. 1959;3: p. 216–29. 93. Heddle JA, et al ., The induction of micronuclei as a measure of genotoxicity: A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res. 1983.123: p. 527–49 94. Mavournin KH, et al., The in vivo micronucleus assay in mammalian bone marrow and peripheral blood. A report of the U.S. Environmental Protection Agency Gene Tox Program. Mutat Res. 1990. 239: p. 29–80. 95. Hayashi M, et al., In vivo rodent erythrocyte micronucleus assay. Mutat Res. 1994. 312:p. 293–304. 96. Hayashi M, et al., In vivo rodent erythrocyte micronucleus assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity testing, and automated scoring. Environ Mol Mutagen. 2000. 35: p. 234–252. 97. Hayashi M, et al., In vivo erythrocyte micronucleus assay III. Validation and regulatory acceptance of automated scoring and the use of rat peripheral blood reticulocytes, with discussion of non-hematopoietic target cells and a single dose-level limit test. Mutat Res. 2007. 627: p. 10–30. 98. OECD Test Guideline TG-474. 2014 . Accessed 13 May 2016. 99. Hayashi M. The micronucleus test-most widely used in vivo genotoxicity test.Genes Environ. 2016 Oct 1;38:18. eCollection 2016. Review. 100. Roll R., et al ., New Perspectives in Acute Toxicity Testing of Chemicals. Toxicol. Lett. 1986, Suppl. 31: p. 86. 101. Roll R.,et al ., Neue Wege zur Bestimmung der akuten Toxizität von Chemikalien. Bundesgesundheitsblatt 1989, 32, p. 336-341. 102. Diener W.,et al., The Biometric Evaluation of the Acute-Toxic-Class Method (Oral). Arch. Toxicol. 1994, 68, p. 559-610. 103. Diener W., Mischke U., Kayser D. and Schlede E., The Biometric Evaluation of the OECD Modified Version of the Acute-Toxic-Class Method (Oral). Arch. Toxicol. 1995, 69, p. 729-734. 104. Diener W., and Schlede E., Acute Toxicity Class Methods: Alternatives to LD/LC50 Tests. ALTEX 1999, 16, p. 129-134. 105. Schlede E., Mischke U., Roll R. and Kayser D. , A National Validation Study of the AcuteToxic-Class Method – An Alternative to the LD50 Test. 1992. Arch. Toxicol. 66, p. 455-470. 106. Schlede E., et al ., The International Validation Study of the Acute-Toxic-Class Method (Oral). 1994. Arch. Toxicol. 69, p. 659-670. 107. Chan P.K. and A.W. Hayes. Chap. 16. Acute Toxicity and Eye Irritancy. Principles and Methods of Toxicology. Third Edition. 1994. A.W. Hayes, Editor. Raven Press, Ltd., New York, USA. 108. OECD Guidance Document on the Recognition, 2000. Assessment and Use of Clinical Signs as Humane Endpoints for Experimental Animals Used in Safety Evaluation Environmental Health and Safety Monograph Series on Testing and Assessment No 19. 109. Sellappa, S., et al., Micronucleus Test in Exfoliated Buccal Cells from Chromium Exposed Tannery Workers. International Journal of Bioscience, Biochemistry and Bioinformatics, 2011. 1(1): p. 58-62. 110. Bhattacharjee et al., Chromium terephthalate metal-organic framework MIL-101: Synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv., 2014. 4: p. 52500-52525. 111. Vankovic, S; Preussmann et al., Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats. Food Cosmet Toxicol, 1975. 13:p. 347-351. 112. U.S. EPA. (1998) Toxicological review of trivalent chromium. Available online at http://www.epa.gov/iris. 113. Richard J. Sheehan et al., Terephthalic Acid, Dimethyl Terephthalate, and Isophthalic Acid in Ullmann's Encyclopedia of Industrial Chemistry. 2002. Wiley-VCH, Weinheim. 114. Charles River ,CD-1 Mouse Clinical Pathology Data. 2012 .Charles River Technical Sheet Retrieved 2019/01/31, from http://animalab.eu/sites/all/pliki/produktydopobrania/clinical-pathology-data-for-north-american-cd-1-mouse-colonies-forjanuary-2008-december-011.pdf. 115. Simon-Yarza, T., et al., In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration. International Journal of Pharmaceutics, 2016. 511(2): p. 1042-1047. 116. Alarifi, S., D. Ali, and S. Alkahtani, Mechanistic investigation of toxicity of chromium oxide nanoparticles in murine fibrosarcoma cells. Int J Nanomedicine, 2016. 11: p. 1253-9. 117. Bagchi, D., et al., Comparative induction of oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and chromium nicotinate. Res Commun Mol Pathol Pharmacol, 1997. 97(3): p. 335-46. 118. Hepburn, D.D. and J.B. Vincent, Tissue and subcellular distribution of chromium picolinate with time after entering the bloodstream. J Inorg Biochem, 2003. 94(1-2): p. 86-93. 119. Wuttke et al., Validating Metal-Organic Framework Nanoparticles for their Nanosafety in Diverse Biomedical Applications. Adv. Healthcare Mater., 2017. 6: p. 1600818. 120. W.M. Pardridge, The blood-brain barrier: bottleneck in brain drug development, NeuroRx. 2005. 2: p. 3–14. 121. K. Tamaki, S. Sadoshima, D.D. Heistad, Increased susceptibility to osmotic disruption of the blood-brain barrier in chronic hypertension, Hypertension 1984. 6: p. 633–638. 122. Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. 2018. J Control Release. 28;270: p.290-303. 123. Y. Cheng,.et al ., Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging, Small .2014.10 : p. 5137–5150. 124. Y.Zhang,et al ., Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier, 2016. Sci. Rep. 6 : p. 25794–25801. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74890 | - |
| dc.description.abstract | 奈米科技倍被認為被認為是一種操縱奈米級物質的新興技術。奈米粒子定義為大小介於1到100奈米的顆粒物質。最近出現的金屬有機骨架材料吸引了很多研究者的興趣。在各種金屬有機骨架材料中,MIL-101(Cr) 奈米粒子是最具代表性的金屬有機骨架材料之一。MIL-101(Cr) 奈米粒子的獨特性質使其成為工業上的理想選擇,例如藥物輸送系統。然而,重要的毒性問題也隨著這些有前景的應用而浮出檯面,特別是在生物醫學領域。目前MIL-101(Cr) 奈米粒子的毒性尚未清楚。本論文將MIL-101 (Cr) 奈米粒子口服給予ICR小鼠以評估其短期和長期體內毒性。首先,微核試驗的結果顯示MIL-101 (Cr) 奈米粒子可能誘導染色體結構結構及數目上的缺失,導致紅血球生成缺陷。在急性毒性試驗,組間體重增加、食物和水的消耗量和相對器官重量之結果相似,而臨床生化檢驗結果的變化則沒有劑量相關性。在連續28日經口毒性試驗,組間體重增加、食物和水的消耗量和血液學分析之結果相似,而相對器官重量的變化則沒有劑量相關性。臨床生化檢驗方面,在母鼠的1000 mg/kg 組別中,其GOT和總膽紅素上升、白蛋白/球蛋白比值下降,但無特異性及劑量關係。接著對肝臟切片進行組織化學染色發現在對照組或者高劑量組之肝臟,腎臟,心臟,脾臟, 腎上腺,副睪丸,睪丸,子宮及卵巢中,兩者皆無明顯的變化 | zh_TW |
| dc.description.abstract | Nanotechnology has considered an emerging technology that refers to the manipulation of matter at nanoscale. Nanoparticles (NPs) are defined as particulate substances with a size in the range of 1 to 100 nm. The recent emergence of porous metal-organic frameworks (MOFs) has attracted a great deal of research interest. Among all kinds of MOFs, MIL-101(MIL, Material of Institut Lavoisier) (Cr)NPs is one of the most representative MOFs. The unique properties make MIL-101(Cr)NPs an excellent candidate for industrial applications, for examples drug delivery systems. However, important toxicological concerns arose from these promising applications, notably in biomedicine. The toxicity of MIL-101(Cr)NPs has never been reported so far. In this study, the specific aim was to determine the effect of MIL-101(Cr)NPs orally administered to ICR mice by evaluating the short-term and long-term in vivo toxicity. First, by micronucleus assay, we demonstrated that MIL-101(Cr)NPs might induce structural or numerical chromosomal damage, which result in defeat erythropoiesis. In acute toxicity study, body weight gain, food or water consumption and relative organ weight were similar between groups. The changes in clinical chemistry showed no dose correlation. In repeated dose 28-day oral toxicity study, body weight gain, food or water consumption and hematology analysis were similar between groups. The changes in relative organ weight were not dose correlated. Increases in GOT and total bilirubin and decreases in albumin/globin ratio were observed in females of 1000 mg/kg group. The results indicated non-specific finding and without dose- related relationship . Next, we performed a histochemical staining in the sections of liver. The results showed that no treatment-related histopathological changes were recorded in the liver, kidney, heart, spleen, adrenal gland, epididymis, testis, uterus, and ovary of the control mice or high-dose (1000 mg/kg) MIL-101(Cr)NPs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T09:09:39Z (GMT). No. of bitstreams: 1 ntu-108-D03447001-1.pdf: 10822758 bytes, checksum: d50ecc46cfcd3068f6efb4843ad53897 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Table of Contents
口試委員會審定書……………………………………………………………………………………….……………..i 中文摘要 ii 英文摘要 iii Abbreviation v List of Figures vi List of Tables vii Chapter 1 Introduction 1 1.1. Nanotechnology 1 1.2. Nanoparticles 3 1.3. Nanotoxicology 4 1.4. Molecular mechanisms underlying nanotoxicity 6 1.4.1. Oxidative stress and DNA damage 6 1.4.2. Inflammation-mediated nanotoxicity 9 1.5. Metal-organic frameworks (MOFs) 13 1.6. MIL-101 (Cr) 15 1.6.1 chromium toxicity………………………………………………………………….17 1.7. Specific aim 19 Chapter 2 Materials and Methods 20 2.1. Synthesis of Metal-Organic Frameworks MIL-101(Cr) 20 2.2. Characterization of MIL-101(Cr) 20 2.3. Animals 21 2.4. Micronucleus assay 22 2.5. Acute toxicity study 25 2.5.1 OECD 423 guideline…………………………………………………….........25 2.6. Repeated dose 28-day oral toxicity study 29 2.7. Observation and examination items 30 2.7.1. Body weight, food and water consumption 30 2.7.2. Organ weight 30 2.7.3. Hematological analysis.. 30 2.7.4. Biochemical analysis of blood 31 2.7.5. Histopathological examination……………………………………………………..32 2.8. Statistical analysis 32 Chapter 3 Results 33 3.1. Physical characteristics of MIL-101(Cr) powders 33 3.2. Micronucleus assay 34 3.2.1 Micronucleus assay.....................................................................................................34 3.2.2 General observation 34 3.3. Acute toxicity study 35 3.3.1. Body weight 35 3.3.2. Food and water consumption 35 3.3.3. Organ weights 35 3.3.4. Clinical pathology 36 3.4. Repeated dose 28-day oral toxicity study 36 3.4.1 Body weight 36 3.4.2. Food and water consumption 36 3.4.3. Organ weights 37 3.4.4. Clinical pathology 37 Chapter 4 Discussion 38 Chapter 5 Conclusions 46 Figures 47 Tables 56 References 67 Supplemental data ……………………………………………………………………………………………………..81 | |
| dc.language.iso | zh-TW | |
| dc.subject | MIL-101(Cr) 奈米粒子 | zh_TW |
| dc.subject | 微核試驗 | zh_TW |
| dc.subject | 急性毒性試驗 | zh_TW |
| dc.subject | 連續28日毒性試驗 | zh_TW |
| dc.subject | MIL-101(Cr)NPs | en |
| dc.subject | micronucleus assay | en |
| dc.subject | acute toxicity study | en |
| dc.subject | repeated dose 28-day oral toxicity study | en |
| dc.title | 奈米粒子MIL-101(Cr)之急性毒性測試及重複毒性測試 | zh_TW |
| dc.title | Acute oral toxicity and repeated dose 28-day oral toxicity studies of MIL-101(Cr) nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉秉慧,姜志剛,陳冠州,黃國皓 | |
| dc.subject.keyword | MIL-101(Cr) 奈米粒子,微核試驗,急性毒性試驗,連續28日毒性試驗, | zh_TW |
| dc.subject.keyword | MIL-101(Cr)NPs,micronucleus assay,acute toxicity study,repeated dose 28-day oral toxicity study, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU201904194 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-10-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 10.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
