Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74865
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇大成
dc.contributor.authorYun-Shan Chungen
dc.contributor.author鍾昀珊zh_TW
dc.date.accessioned2021-06-17T09:09:07Z-
dc.date.available2025-03-13
dc.date.copyright2020-03-13
dc.date.issued2019
dc.date.submitted2019-10-22
dc.identifier.citationAkbarzadeh, M.A.; Khaheshi, I.; Sharifi, A.; Yousefi, N.; Naderian, M.; Namazi, M.H.; Safi, M.; Vakili, H.; Saadat, H.; Alipour Parsa, S.; Nickdoost, N. The association between exposure to air pollutants including PM10, PM2.5, ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide concentration and the relative risk of developing STEMI: A case-crossover design. Environmental research 2018;161:299-303
Babatola, S.S. Global burden of diseases attributable to air pollution. J Public Health Afr 2018;9:813-813
Battisti-Charbonney, A.; Fisher, J.; Duffin, J. The cerebrovascular response to carbon dioxide in humans. J Physiol 2011;589:3039-3048
Baumgartner, J.; Schauer, J.J.; Ezzati, M.; Lu, L.; Cheng, C.; Patz, J.A.; Bautista, L.E. Indoor air pollution and blood pressure in adult women living in rural China. Environmental health perspectives 2011;119:1390-1395
Bernstein, J.A.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J.; Reijula, K.; Reponen, T.; Seltzer, J.; Smith, A.; Tarlo, S.M. The health effects of non-industrial indoor air pollution. The Journal of allergy and clinical immunology 2008;121:585-591
Brinton, T.J.; Cotter, B.; Kailasam, M.T.; Brown, D.L.; Chio, S.S.; O'Connor, D.T.; DeMaria, A.N. Development and validation of a noninvasive method to determine arterial pressure and vascular compliance. The American journal of cardiology 1997;80:323-330
Brinton, T.J.; Walls, E.D.; Chio, S.S. Validation of pulse dynamic blood pressure measurement by auscultation. Blood pressure monitoring 1998;3:121-124 Brook, R.D. Cardiovascular effects of air pollution. Clinical science (London, England : 1979) 2008;115:175-187
Brook, R.D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.;Mittleman, M.; Samet, J.; Smith, S.C., Jr.; Tager, I. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 2004;109:2655-2671
Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; Peters, A.; Siscovick, D.; Smith, S.C., Jr.; Whitsel, L.; Kaufman, J.D. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010;121:2331-2378
Chen, G.; Li, S.; Zhang, Y.; Zhang, W.; Li, D.; Wei, X.; He, Y.; Bell, M.L.; Williams, G.; Marks, G.B.; Jalaludin, B.; Abramson, M.J.; Guo, Y. Effects of ambient PM1 air pollution on daily emergency hospital visits in China: an epidemiological study. The Lancet Planetary Health 2017;1:e221-e229
Chen, S.Y.; Chan, C.C.; Lin, Y.L.; Hwang, J.S.; Su, T.C. Fine particulate matter results in hemodynamic changes in subjects with blunted nocturnal blood pressure dipping. Environmental research 2014;131:1-5
Cheng, S.; Enserro, D.; Xanthakis, V.; Sullivan, L.M.; Murabito, J.M.; Benjamin, E.J.; Polak, J.F.; O'Donnell, C.J.; Wolf, P.A.; O'Connor, G.T.; Keaney, J.F.; Vasan, R.S. Association of exhaled carbon monoxide with subclinical cardiovascular disease and their conjoint impact on the incidence of cardiovascular outcomes. European heart journal 2014;35:2980-2987
Chio, S.S.; Tsai, J.J.; Hsu, Y.M.; Lapointe, J.C.; Huynh-Covey, T.; Kwan, O.L.; DeMaria, A.N. Development and validation of a noninvasive method to estimate cardiac output using cuff sphygmomanometry. Clinical cardiology 2007;30:615-620
Chuang, Y.H.; Mazumdar, S.; Park, T.; Tang, G.; Arena, V.C.; Nicolich, M.J. Generalized linear mixed models in time series studies of air pollution. Atmospheric Pollution Research 2011;2:428-435
Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int J Environ Res Public Health 2017;14
Clark, M.L.; Bazemore, H.; Reynolds, S.J.; Heiderscheidt, J.M.; Conway, S.; Bachand, A.M.; Volckens, J.; Peel, J.L. A baseline evaluation of traditional cook stove smoke exposures and indicators of cardiovascular and respiratory health among Nicaraguan women. International journal of occupational and environmental health 2011;17:113-121
Darne, B.; Girerd, X.; Safar, M.; Cambien, F.; Guize, L. Pulsatile versus steady component of blood pressure: a cross-sectional analysis and a prospective analysis on cardiovascular mortality. Hypertension (Dallas, Tex : 1979) 1989;13:392-400
Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. Journal of thoracic disease 2016;8:E8-e19
Dutta, A.; Mukherjee, B.; Das, D.; Banerjee, A.; Ray, M.R. Hypertension with elevated levels of oxidized low-density lipoprotein and anticardiolipin antibody in the circulation of premenopausal Indian women chronically exposed to biomass smoke during cooking. Indoor air 2011;21:165-176
Emmerich, S.J.; Persily, A.K. State-of-the-art review of CO2 demand controlled ventilation technology and application ed^eds: Diane Publishing; 2003
Franchini, M.; Mannucci, P.M. Air pollution and cardiovascular disease. Thromb Res 2012;129:230-234
Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nature reviews Immunology 2011;11:607- 615
Huang, C.J.; Webb, H.E.; Zourdos, M.C.; Acevedo, E.O. Cardiovascular reactivity, stress, and physical activity. Frontiers in physiology 2013;4:314
Huang, Y.L.; Chen, H.W.; Han, B.C.; Liu, C.W.; Chuang, H.C.; Lin, L.Y.; Chuang, K.J. Personal exposure to household particulate matter, household activities and heart rate variability among housewives. PloS one 2014;9:e89969
Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of exposure analysis and environmental epidemiology 2001;11:231-252
Leaderer, B.P.; Cain, W.S.; Isseroff, R.; Berglund, L.G. Ventilation requirements in buildings—II. particulate matter and carbon monoxide from cigarette smoking. Atmospheric Environment (1967) 1984;18:99-106
Lee, M.S.; Hang, J.Q.; Zhang, F.Y.; Dai, H.L.; Su, L.; Christiani, D.C. In-home solid fuel use and cardiovascular disease: a cross-sectional analysis of the Shanghai Putuo study. Environmental health : a global access science source 2012;11:18
Li, N.; Chen, G.; Liu, F.; Mao, S.; Liu, Y.; Hou, Y.; Lu, Y.; Liu, S.; Wang, C.; Xiang, H.; Guo, Y.; Li, S. Associations of long-term exposure to ambient PM1 with hypertension and blood pressure in rural Chinese population: The Henan rural cohort study. Environment international 2019;128:95-102
Liang, R.; Zhang, B.; Zhao, X.; Ruan, Y.; Lian, H.; Fan, Z. Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J Hypertens 2014;32:2130-2140
Liao, C.M.; Chen, S.C.; Chen, J.W.; Liang, H.M. Contributions of Chinese-style cooking and incense burning to personal exposure and residential PM concentrations in Taiwan region. The Science of the total environment 2006;358:72-84
Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-2260
Lin, L.Y.; Chuang, H.C.; Liu, I.J.; Chen, H.W.; Chuang, K.J. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population. The Science of the total environment 2013;463-464:176-181
Lin, L.Y.; Lin, C.Y.; Lin, Y.C.; Chuang, K.J. The effects of indoor particles on blood pressure and heart rate among young adults in Taipei, Taiwan. Indoor air 2009;19:482-488
Linn, W.S.; Gong, H., Jr.; Clark, K.W.; Anderson, K.R. Day-to-day particulate exposures and health changes in Los Angeles area residents with severe lung disease. Journal of the Air & Waste Management Association (1995) 1999;49:108-115
Liu, L.; Ruddy, T.; Dalipaj, M.; Poon, R.; Szyszkowicz, M.; You, H.; Dales, R.E.; Wheeler, A.J. Effects of indoor, outdoor, and personal exposure to particulate air pollution on cardiovascular physiology and systemic mediators in seniors. Journal of occupational and environmental medicine 2009;51:1088-1098
Madhavan, S.; Ooi, W.L.; Cohen, H.; Alderman, M.H. Relation of pulse pressure and blood pressure reduction to the incidence of myocardial infarction. Hypertension 1994;23:395-401
McCracken, J.; Smith, K.R.; Stone, P.; Diaz, A.; Arana, B.; Schwartz, J. Intervention to lower household wood smoke exposure in Guatemala reduces ST-segment depression on electrocardiograms. Environmental health perspectives 2011;119:1562-1568
McCracken, J.P.; Smith, K.R.; Diaz, A.; Mittleman, M.A.; Schwartz, J. Chimney stove intervention to reduce long-term wood smoke exposure lowers blood pressure among Guatemalan women. Environmental health perspectives 2007;115:996- 1001
McEniery, C.M.; Cockcroft, J.R.; Roman, M.J.; Franklin, S.S.; Wilkinson, I.B. Central blood pressure: current evidence and clinical importance. European heart journal 2014;35:1719-1725
Meyer, G.; Andre, L.; Tanguy, S.; Boissiere, J.; Farah, C.; Lopez-Lauri, F.; Gayrard, S.; Richard, S.; Boucher, F.; Cazorla, O.; Obert, P.; Reboul, C. Simulated urban carbon monoxide air pollution exacerbates rat heart ischemia-reperfusion injury. American journal of physiology Heart and circulatory physiology 2010;298:H1445-1453
Mithoefer, J.C.; Kazemi, H. EFFECT OF CARBON DIOXIDE ON HEART RATE. J Appl Physiol 1964;19:1151-1156
Pan, A.; Clark, M.L.; Ang, L.W.; Yu, M.C.; Yuan, J.M.; Koh, W.P. Incense use and cardiovascular mortality among Chinese in Singapore: the Singapore Chinese Health Study. Environmental health perspectives 2014;122:1279-1284
Polidori, A.; Turpin, B.; Meng, Q.Y.; Lee, J.H.; Weisel, C.; Morandi, M.; Colome, S.; Stock, T.; Winer, A.; Zhang, J.; Kwon, J.; Alimokhtari, S.; Shendell, D.; Jones, J.; Farrar, C.; Maberti, S. Fine organic particulate matter dominates indoor-generated PM2.5 in RIOPA homes. Journal of exposure science & environmental epidemiology 2006;16:321-331
Pope, C.A., 3rd; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004;109:71-77
Pope, C.A., 3rd; Dockery, D.W. Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association (1995) 2006;56:709-742
Raw, G.J.; Coward, S.K.; Brown, V.M.; Crump, D.R. Exposure to air pollutants in English homes. Journal of exposure analysis and environmental epidemiology 2004;14 Suppl 1:S85-94
Schwartz, J. The distributed lag between air pollution and daily deaths. Epidemiology 2000;11:320-326
Stec David, E.; Drummond Heather, A.; Vera, T. Role of Carbon Monoxide in Blood Pressure Regulation. Hypertension (Dallas, Tex : 1979) 2008;51:597-604
Su, T.C.; Lee, Y.T.; Chou, S.; Hwang, W.T.; Chen, C.F.; Wang, J.D. Twenty-four-hour ambulatory blood pressure and duration of hypertension as major determinants for intima-media thickness and atherosclerosis of carotid arteries. Atherosclerosis 2006;184:151-156
Su, T.C.; Liao, C.C.; Chien, K.L.; Hsu, S.H.; Sung, F.C. An overweight or obese status in childhood predicts subclinical atherosclerosis and prehypertension/hypertension in young adults. Journal of atherosclerosis and thrombosis 2014;21:1170-1182
Suwa, T.; Hogg, J.C.; Quinlan, K.B.; Ohgami, A.; Vincent, R.; van Eeden, S.F. Particulate air pollution induces progression of atherosclerosis. Journal of the American College of Cardiology 2002;39:935-942
Syazwan, A.; Rafee, B.M.; Juahir, H.; Azman, A.; Nizar, A.; Izwyn, Z.; Syahidatussyakirah, K.; Muhaimin, A.; Yunos, M.S.; Anita, A.; Hanafiah, J.M.; Shaharuddin, M.; Ibthisham, A.M.; Hasmadi, I.M.; Azhar, M.M.; Azizan, H.; Zulfadhli, I.; Othman, J.; Rozalini, M.; Kamarul, F. Analysis of indoor air pollutants checklist using environmetric technique for health risk assessment of sick building complaint in nonindustrial workplace. Drug, healthcare and patient safety 2012;4:107-126
Urbina, E.M.; Brinton, T.J.; Elkasabany, A.; Berenson, G.S. Brachial artery distensibility and relation to cardiovascular risk factors in healthy young adults (The Bogalusa Heart Study). The American journal of cardiology 2002;89:946-951
Urbina, E.M.; Kieltkya, L.; Tsai, J.; Srinivasan, S.R.; Berenson, G.S. Impact of multiple cardiovascular risk factors on brachial artery distensibility in young adults: the Bogalusa Heart Study. American journal of hypertension 2005;18:767-771
Wei, J.N.; Sung, F.C.; Lin, C.C.; Lin, R.S.; Chiang, C.C.; Chuang, L.M. National surveillance for type 2 diabetes mellitus in Taiwanese children. JAMA. 2003;290:1345-1350
Wilke, O.; Jann, O.; Brodner, D. VOC- and SVOC-emissions from adhesives, floor coverings and complete floor structures. Indoor air 2004;14 Suppl 8:98-107
Zanobetti, A.; Canner, M.J.; Stone, P.H.; Schwartz, J.; Sher, D.; Eagan-Bengston, E.; Gates, K.A.; Hartley, L.H.; Suh, H.; Gold, D.R. Ambient pollution and blood pressure in cardiac rehabilitation patients. Circulation 2004;110:2184-2189
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74865-
dc.description.abstract背景:由於大部分時間人們會待在室內環境中,而室內空氣污染對心血管疾病的影響 為近年來全球關注的議題。本研究主要目的是研究室內空氣污染對心血管血流動力學 的影響。
方法:在 2017 及 2018 年間,我們在台北市及新北市總共從 60 個家戶中招募 73 位受 測者,每位受測者皆要配戴 24 小時監測的血流動力學儀器(DynaPulse 5000A, Pulse Metric Inc., San Diego, CA),以及於家戶的客廳配置 24 小時室內空氣污染監測儀器, 包括:測量一氧化碳、二氧化碳濃度、溫度及相對濕度、懸浮微粒濃度、揮發性有機 物質濃度、以及甲醛濃度。而我們應用時間序列分析來評估當暴露到每四分位距 (Interquartile range, IQR))之室內空氣污染物時,心血管動力學所受到的影響。而混合 效果模型被應用在控制年齡、性別、身體質量指數、高膽固醇血症、糖尿病、抽菸習 慣、受測者活動、室內溫度及相對濕度。另外,次分組分析如年齡、性別、抽菸習慣、 燒香習慣及通風狀態。
結果及討論:在此研究中,從 24 小時同步監測室內空氣污染時,可以發現臂動脈及 中心動脈收縮壓、以及心輸出量會顯著上升,而系統性血管之順應性會下降。當暴露 到每增加一個 IQR 之懸浮微粒(懸浮微粒粒徑小於 1、2.5、10 微米(PM1.0, PM2.5, PM10)), 收縮壓會分別增加 0.369 (0.096, 0.641)、0.319 (0.082, 0.5556)及 0.478(0.124, 0.833)毫米 汞柱。而當有人暴露到較高濃度的室內污染物時,心血管功能也會變弱。每增加暴露到一個 IQR 的一氧化碳及二氧化碳時,心跳會分別增加 0.881 (0.388, 1.374) 和 0.838 (0.319, 1.358) 每分鐘之心跳數,而當暴露到每增加一個 IQR 之懸浮微粒(PM1.0, PM2.5, PM10),心跳會分別增加 0.279 (0.090, 0.468)、0.241 (0.077, 0.405)及 0.359 (0.113, 0.604) 每分鐘之心跳數。而每增加一個 IQR 之一氧化碳及二氧化碳時,體血管彈性分別會減 少 -0.011(-0.018, -0.003) 和 -0.007 (-0.017, -0.0005) 毫升/毫米汞柱。而暴露到每增加 一個 IQR 之懸浮微粒(PM1.0, PM2.5, PM10),則會分別減少-0.008 (-0.012, -0.005)、- 0.005 (-0.009, -0.002)及-0.011 (-0.015, -0.007) 毫升/毫米汞柱。次分組分析則顯示居住 在二氧化碳濃度高於 600 ppm 濃度之較差通風環境下,其室內空氣汙染較嚴重,而且 相較於較佳通風環境(室內二氧化碳 < 600 ppm)之受測者,有較不好之心血管效應且 更明顯。而有抽菸習慣之受測者相較於無抽菸習慣之受測者,當暴露到一氧化碳及甲 醛時,會有較顯著的心跳數及心臟輸出量。另外,燒香習慣會造成一氧化碳、二氧化 碳、懸浮微粒及甲醛濃度的增加,而且會增加血壓及心臟之負荷量。 結論:室內空氣污染和血壓、心跳、及心臟負擔成正相關,且有可能造成全身血管彈 性變差,因此,為預防心血管疾病應積極改善居家的空氣品質。
zh_TW
dc.description.abstractBackgrounds: Since people spend the majority of their lifetime staying in indoor environments, the contribution of indoor air pollution to human health deserves to be investigated. This study aims to investigate the concurrent real-time monitoring of indoor air quality and cardiovascular function.
Methods: During 2017 to 2018, 73 subjects from 60 families in both Taipei and New Taipei city, Taiwan, were recruited. Concurrent 24-h real-time monitoring of indoor air quality, including carbon monoxide (CO), carbon dioxide (CO2), particulate matter (PM), total volatile organic compound (TVOC), and formaldehyde, were set up in the living room and cardiovascular hemodynamics were performed for each participant. Time series analysis was applied to estimate the change of cardiovascular hemodynamics for every one interquartile range (IQR) increase in concentration of indoor air pollutants. The linear mixed effect models were applied to estimate the effects of indoor air pollution on cardiovascular hemodynamics after controlling age, gender, body mass index, hypercholesterolemia, diabetes, smoking habits, subject’s activity, indoor temperature, and relative humidity. Further subgroup analysis was stratified by age, gender, smoking status, incense burning habits, and ventilation status.
Results: Concurrent 24-h real-time monitoring of indoor air pollution significantly increase brachial and central systolic blood pressure (SBP), cardiac output, and reduce systemic vascular compliance in 73 participants. Concurrent indoor CO2 exposure significantly increases brachial and central blood pressure. Per IQR increase in exposure to particulate matter (PM1.0, PM2.5 and PM10) also significantly increase SBP by estimated change (95% confidence intervals) of 0.369 (0.096, 0.641), 0.319 (0.082, 0.556), 0.478 (0.124, 0.833) mmHg, respectively.
Furthermore, cardiac functions appear worsened among those who are exposed to higher concentration of indoor air pollution. Per IQR increase in CO and CO2 exposure can increase heart rate by 0.881 (0.388, 1.374) and 0.838 (0.319, 1.358) bpm, respectively. Per IQR increase in particulate matter (PM1.0, PM2.5 and PM10) exposure can increase heart rate by 0.279 (0.090, 0.468), 0.241 (0.077, 0.405), 0.359 (0.113, 0.604) bpm, respectively.
A significant decrease in vascular function also was shown. Per IQR increase in CO and CO2 exposure can decrease SVC by -0.011(-0.018, -0.003) and -0.007 (-0.017, -0.0005) mL/mmHg, respectively. As for PM, per IQR increase in PM1.0, PM2.5, and PM10 exposure, SVC would decrease by -0.008 (-0.012, -0.005), -0.005 (-0.009, -0.002), and -0.011 (-0.015, -0.007) mL/mmHg, respectively. Subgroup analysis shows subjects with poor indoor ventilation, defined by indoor CO2 greater than 600 ppm, significantly impairs indoor air quality and subjects of living in poor ventilation environment would have worsen cardiac hemodynamics than living in good ventilation environment. Subjects with smoking habits experienced more significant effects on heart rate and cardiac output while increasing in exposure to CO and formaldehyde compared to those of non-smoking habits. In addition, habitual incense burning increased indoor CO, CO2, PM and formaldehyde levels and the increase may modify the association between indoor air pollution and blood pressure and cardiac workload.
Conclusions: Indoor air pollution is associated with increased blood pressure, heart rate, and cardiac workload, and impaired vascular compliance in personized 24-h real-time monitoring of cardiovascular hemodynamics. Improving indoor air quality should be one of main focus of proactive prevention of cardiovascular diseases.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:09:07Z (GMT). No. of bitstreams: 1
ntu-108-R06841013-1.pdf: 2179398 bytes, checksum: 4bd3e633a8d029876bbdf1da3cd47f44 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 ..................................................................................................................................I
摘要 .................................................................................................................................II Abstract..................................................................................................................IV List of Tables.........................................................................................................VII List of Figures .......................................................................................................XII Chapter 1. Introduction .......................................................................................... 2
Chapter 2. Materials and Methods.......................................................................... 7
2.1 Study Design......................................................................................................7 2.2 Study population ............................................................................................. 9
2.3 Cardiac and Vascular Functions Assessments................................................ 11
2.4 Cardiovascular hemodynamics ....................................................................... 12
2.5 Environmental Exposures ............................................................................... 14
2.6 Statistical Analysis.......................................................................................... 15
2.6.1 Data Collecting............................................................................................. 16 2.6.2 Time Series Analysis..................................................................................... 16 2.6.3 Subgroup Analysis ....................................................................................... 17
Chapter 3. Results ................................................................................................ 19
3.1. Characteristics of study subjects ................................................................... 19
3.2. Environmental data ....................................................................................... 19
3.3 Time Series of Blood Pressure Reactions ...................................................... 21
3.3.1 The Indoor Gaseous Air Pollutants .............................................................. 21
3.3.2 The Indoor Particle Air Pollutants ................................................................ 21
3.4 Time Series of Cardiac Function Reactions .................................................... 22
3.4.1 The Indoor Gaseous Air Pollutants ............................................................... 22
3.4.2 The Indoor Particle Air Pollutants ................................................................ 23
3.5 Time Series of Vascular reactions .................................................................. 23
3.5.1 The Indoor Gaseous Air Pollutants ............................................................... 23
3.5.2 The Indoor Particle Air Pollutants ................................................................ 24
3.6 Subgroup analysis ........................................................................................ 24
Chapter 4. Discussion .......................................................................................... 37 4.1 Study Limitation and Conclusions................................................................... 40
Reference...............................................................................................................75 Appendix 1. Questionnaire ................................................................................... 86
Appendix 2. Activity record.................................................................................. 99
Appendix 3. Consent Form ................................................................................. 102
dc.language.isoen
dc.subject血管順應性zh_TW
dc.subject血流動力學zh_TW
dc.subject通風差zh_TW
dc.subject室內空氣污染物zh_TW
dc.subject懸浮微粒zh_TW
dc.subjectvascular complianceen
dc.subjectIndoor air pollutionen
dc.subjectparticulate mattersen
dc.subjectcardiovascular hemodynamicsen
dc.subjectpoor ventilationen
dc.subjectcardiac functionen
dc.title室內空氣污染對心血管血流動力學之影響:24 小時同步監測zh_TW
dc.titleIndoor Air Pollution and Cardiovascular Hemodynamics: A 24-hour Real-time Monitoringen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee原田浩二,黃景祥,莊凱任,林亮宇
dc.subject.keyword室內空氣污染物,懸浮微粒,血流動力學,通風差,血管順應性,zh_TW
dc.subject.keywordIndoor air pollution,particulate matters,cardiovascular hemodynamics,poor ventilation,cardiac function,vascular compliance,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201903143
dc.rights.note有償授權
dc.date.accepted2019-10-22
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved