Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74844
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorChi-Chung Chenen
dc.contributor.author陳麒仲zh_TW
dc.date.accessioned2021-06-17T09:08:42Z-
dc.date.available2022-12-03
dc.date.copyright2019-12-03
dc.date.issued2019
dc.date.submitted2019-11-01
dc.identifier.citationM. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2011).
T. F. Kent, S. D. Carnevale, A. T. M. Sarwar, P. J. Phillips, R. F. Klie, and R. C. Myers, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3, 031002 (2010).
D. J. Kim and D. Y. Ryu, N. A. Bojarczuk, J. Karasinski, S. Guha, S. H. Lee, and J. H. Lee, “Thermal activation energies of Mg in GaN:Mg measured by the Hall effect and admittance spectroscopy,” J. Appl. Phys. 88, 2564 (2000).
K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,”Appl. Phys. Lett. 83, 878 (2003).
R. Zeisel, M. W. Bayerl, S. T. B. Goennenwein, R. Dimitrov, O. Ambacher, M. S. Brandt, and M. Stutzmann, “DX-behavior of Si in AlN,” Phys. Rev. B 61, R16283 (2000).
W. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, “Activation energies of Si donors in GaN,” Appl. Phys. Lett. 68, 3144 (1996).
M. Zhong, J. Roberts, W. Kong, A. S. Brown, and A. J. Steckl, “p-type GaN grown by phase shift epitaxy,” Appl. Phys. Lett. 104, 012108 (2014).
M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041 (2003).
Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett. 106, 162102 (2015).
C. Bayram, J. L. Pau, R. McClintock, and M. Razeghi, “Delta-doping optimization for high quality p-type GaN,” J. Appl. Phys. 104, 083512 (2008).
Y. Chen, H. Wu, G. Yue, Z. Chen, Z. Zheng, Z. Wu, G. Wang, H. Jiang, “Enhanced Mg doping efficiency in p-type GaN by indium-surfactant- assisted delta doping method,” Appl. Phys. Express 6, 041001 (2013).
E. C. H. Kyle, S. W. Kaun, E. C. Young, and J. S. Speck, “Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN,” Appl. Phys. Lett. 106, 222103 (2015).
D. C. Look, E. R. Heller, Y. F. Yao, and C. C. Yang, “Significant mobility enhancement in extremely thin highly doped ZnO films,” Appl. Phys. Lett. 106, 152102 (2015).
D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Appl. Phys. Lett. 70, 3377 (1997).
B. Sarkar, S. Mita, P. Reddy, A. Klump, F. Kaess, J. Tweedie, I. Bryan, Z. Bryan, R. Kirste, E. Kohn, R. Collazo, and Z. Sitar, “High free carrier concentration in p-GaN grown on AlN substrates,” Appl. Phys. Lett. 111, 032109 (2017).
P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett. 75, 2444 (1999).
E. L. Waldron, J. W. Graff, and E. F. Schubert, “Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices,” Appl. Phys. Lett. 79, 2737 (2001).
J. Hertkorn, S. B. Thapa, T. Wunderer, F. Scholz, Z. H. Wu, Q. Y. Wei, F. A. Ponce, M. A. Moram, C. J. Humphreys, C. Vierheilig, and U. T. Schwarz, “Highly conductive modulation doped composition graded p-AlGaN/(AlN)/GaN multiheterostructures grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 106, 013720 (2009).
J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-Band-gap uniaxial semiconductor heterostructures,” Science 327, 60 (2010).
H. T. Chen, C. Y. Su, C. G. Tu, Y. F. Yao, C. H. Lin, Y. R. Wu, Y. W. Kiang, and C. C. Yang, “Combining high hole concentration in p-GaN and high mobility in u-GaN for high p-type conductivity in a p-GaN/u-GaN alternating-layer nanostructure,” IEEE Transact. Electron Dev. 64, 115 (2017).
Y. F. Yao, H. T. Chen, Y. Kuo, C. Y. Su, C. G. Tu, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Current penetration depth and effective conductivity of a nano-scale p-GaN/u-GaN alternating-layer p-type structure,” Superlattices and Microstructures 124, 107 (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74844-
dc.description.abstract我們利用分子束磊晶技術,在氮化鎵基板上成功的以低溫345oC的鎂蒸發源,生長出p-型氮化鋁鎵,量測到的鎂摻雜濃度為8 x 1018 cm-3,鋁含量約為25%,電洞濃度為2.8 x 1017 cm-3,電洞遷移率為15.2 cm2/V-s,而電阻率為1.5 Ω-cm,以上霍爾量測結果是在頂部沒有成長p+薄層的樣品上量測。雖然在較高的鎂蒸發源溫度下(鎂蒸發源溫度365 oC),也可以得到p-型效果,但在鎂相對低溫的條件下成長較穩定。我們控制鎂蒸發源溫度由低而高,逐步增大鎂的摻雜量,成長出一系列樣品,並探討其表面變化及霍爾量測結果。我們發現,隨著鎂摻雜量增加,樣品表面V型小凹洞的密度隨之增加,而這些凹洞所顯示之材料缺陷會補償掉摻雜的鎂所提供的電洞,鎂摻雜的結果為n-型。我們進一步進行穿透式電子顯微鏡術的探討,從拍攝的照片中看到,有些V型小凹洞是由基板的差排一路向上延伸,另外有一些則是在成長氮化鋁鎵的過程中才生成。透過調整磊晶的相關條件,改善了表面平整度及晶體品質,我們成功透過摻雜較少量的鎂達到p-型的效果。zh_TW
dc.description.abstractA p-AlGaN layer on a GaN template is successfully grown with molecular beam epitaxy. By using a low Mg effusion cell temperature of 345 oC, we achieve an Mg doping concentration of 8 x 1018 cm-3, a hole concentration of 2.8 x 1017 cm-3, hole mobility of 15.2 cm2/V-s, and resistivity of 1.5 -cm. The Hall measurement results are obtained under the condition without a p+ thin layer at the top. The Al content of the AlGaN layer is about 25 %. Although a similar p-AlGaN behavior can be achieved with a higher Mg effusion cell temperature, the aforementioned lower temperature growth condition is more stable. In searching for the stable growth condition, by increasing the Mg effusion cell temperature for increasing Mg doping, surface V-pit density is increased, leading to the compensation of generated holes such that Mg doping results in n-type behaviors. Some V-pits are formed with threading dislocations extended from the GaN layer into the AlGaN layer. Others are formed in the AlGaN layer. After the crystal quality is improved and the V-pit density is reduced by properly adjusting the growth conditions, p-type behaviors can be observed with Mg doping.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:08:42Z (GMT). No. of bitstreams: 1
ntu-108-R05941083-1.pdf: 4036752 bytes, checksum: 54fe3c561345d5c2cd9007ea1ffabe07 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Content v
List of figure vi
List of table ix
Chapter 1 Introduction 1
1.1 Problems of doped AlGaN 1
1.2 Techniques for improving p-type GaN conductivity 2
1.3 Two-layer fitting method for evaluating current penetration depth and effective conductivity 3
1.4 Research motivations 5
1.5 Thesis structure 6
Chapter 2 Growth of Un-doped AlGaN with Molecular Beam Epitaxy 13
2.1 Foreword 13
2.2 MBE growth of AlGaN 13
2.3 Summary 16
Chapter 3 Growth of Mg-doped AlGaN with Molecular Beam Epitaxy 34
3.1 Parameters for growing p-AlGaN 34
3.2 Search for stable conditions to grow p-AlGaN 35
3.3 TEM studies of an Mg-doped AlGaN sample 41
Chapter 4 Conclusions 75
References 76
dc.language.isoen
dc.subject分子束磊晶zh_TW
dc.subjectmolecular beam epitaxyen
dc.title以分子束磊晶技術生長摻鎂p-型氮化鋁鎵zh_TW
dc.titleMg-doped p-AlGaN Growth with Molecular Beam Epitaxyen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.coadvisor江衍偉
dc.contributor.oralexamcommittee黃建璋,陳弈君,吳育任
dc.subject.keyword分子束磊晶,zh_TW
dc.subject.keywordmolecular beam epitaxy,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201904257
dc.rights.note有償授權
dc.date.accepted2019-11-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved