Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74830
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor葉仲基(Chung-Kee Yeh)
dc.contributor.authorYung-Tai Huangen
dc.contributor.author黃永泰zh_TW
dc.date.accessioned2021-06-17T09:08:25Z-
dc.date.available2023-12-02
dc.date.copyright2019-12-02
dc.date.issued2019
dc.date.submitted2019-11-11
dc.identifier.citation台灣綠屋頂暨立體綠化協會。2019。國外快訊。網址: http://www.greenroof.org.tw/news.php?id=75。上網日期:2019-6-25。
李育道。2018。「上屋頂拔菜」 城市農夫自耕共餐樂。網址:
https://news.tvbs.com.tw/focus/905230。上網日期:2019-6-25。
林玉貴。2011。智慧化室內綠牆感知系統設計之探討。碩士論文。台北:中華科技大學建築工程與環境設計研究所。
知乎。2019。顏色空間。網 址:https://zhuanlan.zhihu.com/p/28745337。上網日期:2019-06-25。
洪佩蓉。2015。台北市間接型養城市綠牆植物種類篩選與應用。碩士論文。台北:
國立台灣大學園藝學系。
黃世孟。2009。建築物的垂直綠化與風土外牆設計。建築師 415:114-120
鄭蘊欣。2014。垂直綠化上植栽結構圖對降溫效果之影響。碩士論文。台北:台灣大學園藝暨景觀學系。
維基百科。2019a。色彩空間。網址: https://zh.wikipedia.org/wiki/%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%96%93。上網日期:2019-06-29。
維基百科。2019b。HSL 和 HSV 色彩空間。網址:https://zh.wikipedia.org/wiki/HSL%E5%92%8CHSV%E8%89%B2%E5%BD%A9 %E7%A9%BA%E9%97%B4。上網日期:2019-06-29。
維基百科。2019c。PyQt。網址:
https://zh.wikipedia.org/wiki/PyQt。上網日期:2019-04-29。 滿天星百香果-嫁接苗與實生苗。2016。網址: https://blog.xuite.net/h460420/twblog/423306990-滿天星百香果-嫁接苗與實生苗。上網日期:2019-05-15。
練冠呈。2011。開放式綠牆填充體系統應用於集合住宅之研究。碩士論文。台北: 臺北科技大學建築與都市設計研究所。
Bargoti, S., and Underwood, J. 2017. Deep fruit detection in orchards. IEEE
International Conference on Robotics and Automation (ICRA) IEEE p. 3626-3633.
Common Objects in Context. Detection Evaluation. 2019. URL:
http://cocodataset.org/#detection-eval. 上網日期:2019-06-25。
CSDN. 2016. 【OpenCV】HSV 顏色辨識-HSV 基本顏色分量範圍。URL:
https://blog.csdn.net/taily_duan/article/details/51506776。上網日期: 2019-4-25。 Chollet, F. 2017. Deep learning with python. USA: Manning Publications.
Gongal, A., A. Silwal, S. Amatya, M. Karkee, Q. Zhang and K. Lewis. 2016. Apple crop-load estimation with over-the-row machine vision system. Computers and Electronics in Agriculture 120 : 26-35.
Jason, C. 2019. Morphology. URL: https://jason-chen-1992.weebly.com/home/-morphology. 上網日期:2019-06-29。
Jetson Green. 2010. Lush Edible Living Wall in Los Angeles. URL:https://www.jetsongreen.com/2010/08/edible-living-wall-los-angeles.htm 上網日期: 2019-06-29。
Kapach, K., E. Barnea, R. Mairon, Y. Edan, and O. Ben-Shahar. 2012. Computer vision
for fruit harvesting robots–state of the art and challenges ahead. International Journal of Computational Vision and Robotics 3(1/2):4-34.
Manso, M., and Castro-Gomes João. 2015. Green wall systems: a review of their
characteristics. Renewable and Sustainable Energy Reviews 41: 863-871. Pascal2. 2019. VOC data sets. URL:
http://host.robots.ox.ac.uk/pascal/VOC/index.html.上網日期:2019-06-25。 Plenty. 2019. What types of produce can a Plenty Farm grow? URL:
https://www.plenty.ag/fresh-produce/.上網日期:2019-06-01。
Redmon, J., and A. Farhadi. 2017. YOLO9000: better, faster, stronger. In Proceedings of
the IEEE conference on computer vision and pattern recognition pp. 7263-7271. Riverbank. 2019. What is PyQt? URL:
https://riverbankcomputing.com/software/pyqt/intro 上網日期:2019-06-27。
Sa, I., Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool. 2016. Deepfruits: A fruit
detection system using deep neural networks. Sensors 16(8):1222.
Sky green. 2019. Sky Greens Vegetables. URL:
https://www.skygreens.com/skygreens-vegetables/. 上網日期:2019-05-27。 Wikipedia. 2019. Vertical farming. URL: https://en.wikipedia.org/wiki/Vertical_farming. 上網日期:2019-04-07。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74830-
dc.description.abstract近年來台北市努力推動垂直綠牆和綠屋頂等政策來降低城市熱島效應、改善城市景觀與淨化城市空氣。在2007 年台北市公部門開始建議重大工程的工地圍籬要有垂直綠牆。美國、歐洲與新加坡漸漸地開始在垂直綠牆面種植蔬果類植物,使垂直綠牆變成垂直農場的一種。此研究與德國柏林工業大學合作,設計一台在垂直綠牆的自動採收機,在設計自動採收機第一步是要使採收機有機器視覺,能辨識蔬果種類與定位,因此本研究開發了一個程式,可以使用在垂直綠牆上進行百香果的定位、數目的計算及 面積的計算等。此程式架構主要為兩大步驟,第一步驟為收集四百多張百香果圖片、並加以標註,再使用 YOLO v3 深度學習模型進行訓練,得到百香果的自動化辨識、初步定位和數目的計算。第二步驟為使用高斯模糊、HSV 色彩轉換、遮罩運算等影像處理方式來做到更進一部準確的果實中心點定位、果實大小計算與輪廓的偵測。此程式以人機介面的形式呈現,讓使用者在使用上更佳的容易上手,平均準確度為 97.93%。zh_TW
dc.description.abstractIn recent years, Taipei City Government has worked hard to promote vertical green walls and green roofs to reduce heat island effects, improve urban landscapes and purify urban air. In 2007, the public sector in Taipei city began to propose vertical walls for the construction site fence. The United States, Europe, and Singapore have gradually begun to grow fruits and vegetables on vertical green walls, turning vertical green walls into vertical farms. This research cooperates with the Technical University of Berlin in Germany to design an automatic harvesting machine in the vertical green wall. The first step in designing the automatic harvesting machine is to make the harvester have machine visual and recognize the type and positioning of fruits and vegetables. A program was developed to use the positioning, number calculation and area calculation of passion fruit on vertical green walls. The program architecture is mainly composed of two major steps. The first step is to collect and label more than 400 images of passion fruit, and then use the YOLO v3 deep learning model to train, and obtain the automatic identification, preliminary positioning and number calculation of passion fruit. The second step is to use image processing methods such as Gaussian blur, HSV color conversion, mask calculation, etc. to achieve more accurate fruit center point, fruit size calculation and contour detection. This program is presented in the form of GUI, which makes it easier for users to use it. The average accuracy of this program is 97.93%.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:08:25Z (GMT). No. of bitstreams: 1
ntu-108-R06631041-1.pdf: 3273907 bytes, checksum: 589b0fc5cc739803f0559ea84646301b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 ............................i
摘要 ...........................ii
ABSTRACT ......................iii
目錄 ...........................iv
圖目錄 .........................vi
表目錄 ...................... viii
第一章 前言.......................1
第二章 文獻探討 ................. 8
2.1 垂直綠牆分類 ................ 8
2.2 機器視覺 ................... 14
2.2.1 色彩空間 ................. 14
2.2.2 形態學 ................... 15
2.3 蔬果偵測 ................... 17
2.4 PyQt ...................... 19
第三章 研究方法與實驗步驟 ....... 20
3.1 垂直綠牆之設計與材料 ........ 20
3.2 實驗流程圖 ................. 22
3.3 資料收集與增強 ............. 23
3.4 YOLO v3 模型 ...............24
3.4.1 模型介紹 ..................24
3.4.2 模型架構 ................. 25
3.4.3 遷移式學習 ............... 26
3.4.4 雅卡爾指數 ............... 27
3.4.5 判別模型好壞 ..............27
3.4.3 模型參數設定 ............. 29
3.6 影像處理的方法 ............. 29
3.6.1 高斯模糊 .................. 30
3.6.2 色彩空間轉換與遮罩 ......... 30
3.6.3 閉運算與開運算 ............. 32
3.6.4 找出邊界 ................... 33
3.7 GUI 架構設計 ................. 34
第四章 結果與討論 ................. 36
4.1 anchor box 的訓練 ............ 36
4.2 YOLO 模型訓練 ................ 37
4.2.1 模型平均準確度 .............. 37
4.2.2 模型的過度擬合現象 ............ 40
4.3 bounding box 區域影像處理的結果 . 42
4.3.1 遮罩數值與結果 ................ 42
4.4 GUI 介面 ....................... 46
第五章 結論與建議 ................... 48
參考文獻 ........................... 49
dc.language.isozh-TW
dc.subject影像辨識zh_TW
dc.subject垂直綠牆zh_TW
dc.subject百香果zh_TW
dc.subjectvertical green wallen
dc.subjectpassion fruiten
dc.subjectimage recognitionen
dc.title應用深度學習於垂直綠牆果實之影像辨識zh_TW
dc.titleApplication of Deep Learning on the Image Recognition of Vertical Green Wall Fruitsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃振康(Chen-Kang Huang),吳剛智(GANG-ZHI WU)
dc.subject.keyword垂直綠牆,百香果,影像辨識,zh_TW
dc.subject.keywordvertical green wall,passion fruit,image recognition,en
dc.relation.page51
dc.identifier.doi10.6342/NTU201904274
dc.rights.note有償授權
dc.date.accepted2019-11-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
Appears in Collections:生物機電工程學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
3.2 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved