Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74791
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李文宗
dc.contributor.authorTzu-Hsuan Huangen
dc.contributor.author黃紫渲zh_TW
dc.date.accessioned2021-06-17T09:07:39Z-
dc.date.available2025-03-13
dc.date.copyright2020-03-13
dc.date.issued2019
dc.date.submitted2019-11-28
dc.identifier.citation1. Taiwan Cancer Registry Unit. Cancer Registry Annual Report 2016. Taiwan: Health Promotion Administration Ministry of Health and Welfare Taiwan. 

2. Percy C, Stanek E, Gloeckler L. Accuracy of cancer death certificates and its effect on cancer mortality statistics. Am J Public Health. 1981;71(3):242–250.
3. Mant J, Wilson S, Parry J, et al. Clinicians didn’t reliably distinguish between different causes of cardiac death using case histories. J Clin Epidemiol. 2006;59(8):862–867.
4. Johnson CJ, Hahn CG, Fink AK, German RR. Variability in cancer death certificate accuracy by characteristics of death certifiers. Am J Forensic Med Pathol. 2012;33(2):137–142. 

5. Schaffar R, Rapiti E, Rachet B, Woods L. Accuracy of cause of death data routinely recorded in a population-based cancer registry: impact on cause-specific survival and validation using the Geneva Cancer Registry. BMC Cancer. 2013;13:609.
6. Xing Y, Chang GJ, Hu CY, et al. Conditional survival estimates improve over time for patients with advanced melanoma: results from a population-based analysis. Cancer. 2010;116(9):2234–2241.
7. Skuladottir H, Olsen JH. Conditional survival of patients with the four major histologic subgroups of lung cancer in Denmark. J Clin Oncol. 2003;21(16):3035–3040. 

8. Kim DH, Uno H, Wei LJ. Restricted Mean Survival Time as a Measure to Interpret Clinical Trial Results. JAMA Cardiol. 2017 Nov 1;2(11):1179-1180.
9. Royston P, Parmar MK. The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. Stat Med. 2011;30(19):2409–2421.
10. BerksonJ, GageRP. Calculation of survival rates for cancer. ProcStaff Meet Mayo Clin. 1950;25(11):270–286.
11. Ederer F, Axtell LM, Cutler SJ. The relative survival rate: a statistical methodology. Natl Cancer Inst Monogr. 1961;6:101–121.
12. Pohar Perme M, Estève J, Rachet B. Analysing population-basedcancer survival settling the controversies. BMC Cancer. 2016;16(1):933.
13. Perme MP, Stare J, Estève J. On estimation in relative survival. Biometrics. 2012;68(1):113–120.
14. Mariotto AB, Noone AM, Howlader N, et al. Cancer survival: anoverview of measures, uses, and interpretation. J Natl Cancer Inst Monogr. 2014;2014(49):145–186.
15. 25. Estève J, Benhamou E, Croasdale M, Raymond L. Relative survival and the estimation of net survival: elements for further discussion. Stat Med. 1990;9(5):529–538.
16. Belot A, Ndiaye A, Luque-Fernandez MA, Kipourou DK, Maringe C, Rubio FJ, Rachet B. Summarizing and communicating on survival data according to the audience: a tutorial on different measures illustrated with population-based cancer registry data. Clinical Epidemiology 2019;11:53–65.
17. P.C. Lambert, P.W. Dickman, C.P. Nelson, P. Royston, Estimating the crude prob- ability of death due to cancer and other causes using relative survival models, Stat. Med. 2010; 29:885–895. 

18. Bouvier AM, Remontet L, Hedelin G, et al. Conditional relative survival of cancer patients and conditional probability of death: A French National Database analysis. Cancer. 2009;115(19):4616–4624.
19. Shack L, Bryant H, Lockwood G, Ellison LF. Conditional relative survival: a different perspective to measuring cancer outcomes. Cancer Epidemiol. 2013;37(4):446–448.
20. Janssen-Heijnen ML, Gondos A, Bray F, et al. Clinical relevance of conditional survival of cancer patients in europe: age-specific analyses of 13 cancers. J Clin Oncol. 2010;28(15):2520–2528. 

21. Yu XQ, Baade PD, O’Connell DL. Conditional survival of cancer patients: An Australian perspective. BMC Cancer. 2012;12(1):460. 

22. Grafféo N, Castell F, Belot A, Giorgi R. A log-rank-type test to compare 
net survival distributions. Biometrics. 2016;72(3):760–769. 

23. Pavlic K, Perme MP.On comparison of net survival curves. BMCMed Res Methodol. 2017;17(1):79. 

24. Lee M, Cronin KA, Gail MH, Feuer EJ. Predicting the absolute risk of dying from colorectal cancer and from other causes using population-based cancer registry data. Stat Med. 2012;31(5):489–500. 

25. Charvat H, Bossard N, Daubisse L, Binder F, Belot A, Remontet L. Probabilities of dying from cancer and other causes in French cancer patients based on an unbiased estimator of net survival: a study of five common cancers. Cancer Epidemiol. 2013;37(6):857–863. 

26. Eloranta S, Adolfsson J, Lambert PC, et al. How can we make cancer survival statistics more useful for patients and clinicians: an illustration using localized prostate cancer in Sweden. Cancer Causes Control. 
2013;24(3):505–515. 

27. Andersen PK. Decomposition of number of life years lost according to causes of death. Stat Med. 2013;32(30):5278–5285. 

28. Hakama M, Hakulinen T. Estimating the expectation of life in cancer survival studies with incomplete follow-up information. J Chronic Dis. 
1977;30(9):585–597. 

29. Chu PC, Wang JD, Hwang JS, Chang YY. Estimation of life expectancy and the expected years of life lost in patients with major cancers: extrapolation of survival curves under high-censored rates. Value Health. 2008;11(7):1102–1109. 

30. Baade PD, Youlden DR, Andersson TM, et al. Estimating the change in life expectancy after a diagnosis of cancer among the Australian population. BMJ Open. 2015;5(4):e006740. 

31. Dehbi HM, Royston P, Hackshaw A. Life expectancy difference and life expectancy ratio: two measures of treatment effects in randomised trials with non-proportional hazards. BMJ. 2017;357:j2250. 

32. Liu CY, Hung YT, Chuang YL, et al. Incorporating Development Stratification of Taiwan Townships into Sampling Design of Large Scale Health Interview Survey. Journal of Health Management. 2006;1(4):1-22.
33. Huo YR, Phan K, MorrisDL, Liauw W. Systematic review and a meta-analysis of hospital and surgeon volume/outcome relationships in colorectal cancer surgery. J Gastrointest Oncol. 2017;8(3):534-546.
34. Kuhry E, Bonjer HJ, Haglind E, Hop WC, Veldkamp R, Cuesta MA, et al. Impact of hospital case volume on short-term outcome after laparoscopic operation for colonic cancer. Surg Endosc. 2005;19(5):687–692.
35. Anderson O, Ni Z, Møller H, et al. Hospital volume and survival in oesophagectomy and gastrectomy for cancer. Eur J Cancer. 2011;47(16):2408-2414.
36. Hannan EL, Radzyner M, Rubin D, Dougherty J, et al. The influence of hospital and surgeon volume on in-hospital mortality for colectomy, gastrectomy, and lung lobectomy in patients with cancer. Surgery. 2002;131(1), 6-15.
37. de Angelis R, Sant M, Coleman MP, et al. Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE-5-a population-based study. Lancet Oncol. 2014;15(1):23–34.
38. Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25, 676, 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385(9972):977–1010.
39. Wang Y, Chiang CJ, Lee WC. Age-standardized expected years of life lost: quantification of cancer severity. BMC Public Health. 2019; 19: 486.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74791-
dc.description.abstract截至2018年,癌症已連續36年蟬聯台灣十大死因第一位。隨著高齡化的趨勢,癌症所造成的社會負擔,已是台灣群體健康的重要議題。受限於死亡登記檔死因錯誤分類(Misclassification)以及垃圾死因碼(Garbage Code)的問題,目前進行的存活分析大多都是使用全死因死亡為終點事件的存活分析(Overall Survival)。然而,近期在全人口的癌症存活分析中,相對存活分析(Relative Survival)的概念已經越來越被討論。相較於傳統的存活分析方式,相對存活分析納入了競爭風險(Competing Risks)的概念,利用癌症造成的額外死亡風險率(Excess Mortality Hazard),將癌症病患的死亡分解成因癌症而死亡以及因其他非癌症因素而死亡兩部分。進而在假設癌症病患只會死於癌症,而不會死於其他競爭死因的假想情境中,推算出可用在不同族群、國家之間比較的兩個指標:淨存活率(NS)與設限平均淨存活時間(RMNST); 以及真實情境中計算出來的兩個存活機率指標和兩個存活時間指標,分別為:癌症病患死於癌症的粗死亡機率(CPDcancer)、癌症病患死於非癌症因素的粗死亡機率(CPDother)、因癌症所造成的設限平均生命損失(NLYLcancer)以及因其他非癌症因素所造成的設限平均生命損失(NLYLother)。這四個指標提供了比以往更精確的癌症存活狀況,同時也進一步地描繪出因罹患癌症所造成的疾病預後狀況與生命損失。本研究藉由台灣癌症登記資料與死亡登記資料,納入1997年1月1日至2007年12月31日被診斷成癌症的病患,並追蹤至2017年12月31日。本研究藉由相對存活分析的各個指標,以性別、年齡、居住地都市化程度、收治醫療院所規模以及癌症期別作為分層變項,完整的描述台灣18種癌症的癌症病患因癌症與其他非癌症因素所造成的預後狀況與生命損失。zh_TW
dc.description.abstractCancer has been the leading cause of death for 37 years since 1982 in Taiwan. For evaluating the prognosis of cancer patients, population-based cancer survival analysis plays an important role. However, researchers are unable to distinguish the deaths due to cancer and others because the cause of death is unreliable, such as misclassified and garbage code. In contract to conventional survival analysis, relative survival analysis allows researchers to disentangle the impact on survival of the cancer from other causes of death by estimating excess mortality hazard of cancer even when the cause of death is unavailable or unreliable.
In relative survival setting, net survival probability (NS) and restricted mean net survival time (RMNST) estimates the survival that cancer patients would experience if they could only die from the cancer under study. They are useful for comparing the prognosis of cancer between different populations or countries because both two measures do not depend on mortality from other causes. Crude probability of death (CPD) and number of life year lost (NLYL) are both calculate in the real situation and disentangle into two parts: Crude probability of death due to cancer (CPDcancer), crude probability of death due to other causes (CPDother), number of life year lost due to cancer (NLYLcancer) and number of life year lost due to other causes (NLYLother). These measures together present the whole picture about the death with probabilities and life lost after diagnose the cancer.
We recruit patients diagnosed between 1997 and 2007 and followed up to December 31, 2017 from Taiwan population-based cancer registry. Include total 18 cancers. Estimation are stratified by age, sex, calendar year, development level of city, level of hospital volume and cancer stage. We finally provide eight measurements from both survival analysis and relative survival analysis. Each of them contributing differently to provide more comprehensive and detailed information to patients, clinicians, health policy makers.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:07:39Z (GMT). No. of bitstreams: 1
ntu-108-F98842019-1.pdf: 31303742 bytes, checksum: c151a89653b9271d212248ffbdd3947b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
中文摘要 i
英文摘要 ii
圖目錄 vii
表目錄 xiii
第一章 前言 1
第二章 重要名詞解釋 4
第一節 全人口癌症登記資料的存活分析 4
第二節 全人口癌症登記資料的相對存活分析 6
第一項 相對存活比率 6
第二項 淨存活率 7
第三項 條件淨存活率 7
第四項 設限平均淨存活時間 7
第五項 癌症病患粗死亡機率 8
第六項 癌症造成的淨生命損失 9
第三章 研究目的與動機 11
第四章 研究方法 12
第一節 資料來源 13
第二節 居住地都市化程度 14
第三節 收治醫療院所規模 15
第四節 癌症別與癌症期別 15
第五節 相對存活分析 17
第一項 個人風險計算 17
第二項 平均淨存活率與10年設限平均淨存活時間 17
第三項 癌症病患粗死亡機率與存活機率 17
第四項 設限平均淨生命損失與設限平均存活時間 18
第五章 研究結果 20
第一節 台灣18大癌症整體分析結果 20
第一項 平均淨存活率以及設限平均淨存活時間 20
第二項 粗死亡機率與存活機率 37
第三項 設限平均存活時間與設限平均生命損失 50
第二節 14種癌症分析結果 64
口腔癌 64
第一項 平均淨存活率以及設限平均淨存活時間 64
第二項 粗死亡機率與存活機率 68
第三項 設限平均存活時間與設限平均生命損失 69
鼻咽癌 73
第一項 平均淨存活率以及設限平均淨存活時間 74
第二項 粗死亡機率與存活機率 77
第三項 設限平均存活時間與設限平均生命損失 79
食道癌 82
第一項 平均淨存活率以及設限平均淨存活時間 82
第二項 粗死亡機率與存活機率 85
第三項 設限平均存活時間與設限平均生命損失 88
胃癌 91
第一項 平均淨存活率以及設限平均淨存活時間 92
第二項 粗死亡機率與存活機率 95
第三項 設限平均存活時間與設限平均生命損失 98
結腸癌 100
第一項 平均淨存活率以及設限平均淨存活時間 101
第二項 粗死亡機率與存活機率 103
第三項 設限平均存活時間與設限平均生命損失 107
直腸癌 110
第一項 平均淨存活率以及設限平均淨存活時間 111
第二項 粗死亡機率與存活機率 114
第三項 設限平均存活時間與設限平均生命損失 117
肝癌 120
第一項 平均淨存活率以及設限平均淨存活時間 121
第二項 粗死亡機率與存活機率 124
第三項 設限平均存活時間與設限平均生命損失 125
胰臟癌 129
第一項 平均淨存活率以及設限平均淨存活時間 130
第二項 粗死亡機率與存活機率 131
第三項 設限平均存活時間與設限平均生命損失 134
肺癌 136
第一項 平均淨存活率以及設限平均淨存活時間 137
第二項 粗死亡機率與存活機率 140
第三項 設限平均存活時間與設限平均生命損失 143
女性乳癌 146
第一項 平均淨存活率以及設限平均淨存活時間 147
第二項 粗死亡機率與存活機率 149
第三項 設限平均存活時間與設限平均生命損失 152
子宮頸癌 155
第一項 平均淨存活率以及設限平均淨存活時間 156
第二項 粗死亡機率與存活機率 158
第三項 設限平均存活時間與設限平均生命損失 160
卵巢癌 163
第一項 平均淨存活率以及設限平均淨存活時間 164
第二項 粗死亡機率與存活機率 166
第三項 設限平均存活時間與設限平均生命損失 168
攝護腺癌 171
第一項 平均淨存活率以及設限平均淨存活時間 172
第二項 粗死亡機率與存活機率 174
第三項 設限平均存活時間與設限平均生命損失 177
膀胱癌 180
第一項 平均淨存活率以及設限平均淨存活時間 181
第二項 粗死亡機率與存活機率 183
第三項 設限平均存活時間與設限平均生命損失 185
第六章 結論與討論 188
參考文獻 191
附錄圖表 194
dc.language.isozh-TW
dc.subject癌症粗死亡機率zh_TW
dc.subject設限平均生命損失zh_TW
dc.subject相對存活分析zh_TW
dc.subject存活率zh_TW
dc.subject設限平均存活時間zh_TW
dc.subject淨存活率zh_TW
dc.subject設限平均淨存活時間zh_TW
dc.subject競爭風險zh_TW
dc.subject存活分析zh_TW
dc.subjectCompeting Risken
dc.subjectNumber of Life Year Losten
dc.subjectCrude Probability of Death due to Canceren
dc.subjectRestricted Mean Net Survival Timeen
dc.subjectNet Survival Probabilityen
dc.subjectRestricted Mean Survival Timeen
dc.subjectSurvival Probabilityen
dc.subjectSurvival Analysisen
dc.subjectRelative Survival Analysisen
dc.title台灣癌症相對存活分析與生命損失zh_TW
dc.titleCancer Relative Survival and Life Lost in Taiwanen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee林先和,方啟泰,蕭朱杏,廖勇柏
dc.subject.keyword存活分析,競爭風險,相對存活分析,存活率,設限平均存活時間,淨存活率,設限平均淨存活時間,癌症粗死亡機率,設限平均生命損失,zh_TW
dc.subject.keywordSurvival Analysis,Competing Risk,Relative Survival Analysis,Survival Probability,Restricted Mean Survival Time,Net Survival Probability,Restricted Mean Net Survival Time,Crude Probability of Death due to Cancer,Number of Life Year Lost,en
dc.relation.page296
dc.identifier.doi10.6342/NTU201904337
dc.rights.note有償授權
dc.date.accepted2019-11-28
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
30.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved