Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74782
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游佳欣(Jiashing Yu)
dc.contributor.authorChih-Ling Linen
dc.contributor.author林芷苓zh_TW
dc.date.accessioned2021-06-17T09:07:28Z-
dc.date.available2020-01-15
dc.date.copyright2020-01-15
dc.date.issued2019
dc.date.submitted2019-12-01
dc.identifier.citation[1.] F. J. O'Brien, Biomaterials & scaffolds for tissue engineering. Materials Today 14, 88-95 (2011).
[2.] R. Langer, Biomaterials in Drug Delivery and Tissue Engineering:  One Laboratory's Experience. Accounts of Chemical Research 33, 94-101 (2000).
[3.] A. Atala, Tissue Engineering and Regenerative Medicine: Concepts for Clinical Application. Rejuvenation Research 7, 15-31 (2004).
[4.] L. J. Bonassar, C. A. Vacanti, Tissue engineering: The first decade and beyond. Journal of Cellular Biochemistry 72, 297-303 (1998).
[5.] I. Martin, D. Wendt, M. Heberer, The role of bioreactors in tissue engineering. Trends in Biotechnology 22, 80-86 (2004).
[6.] S. MacNeil, Progress and opportunities for tissue-engineered skin. Nature 445, 874 (2007).
[7.] R. E. Horch, J. Kopp, U. Kneser, J. Beier, A. D. Bach, Tissue engineering of cultured skin substitutes. Journal of Cellular and Molecular Medicine 9, 592-608 (2005).
[8.] P. Musoke-Zawedde, M. S. Shoichet, Anisotropic three-dimensional peptide channels guide neurite outgrowth within a biodegradable hydrogel matrix. Biomedical Materials 1, 162-169 (2006).
[9.] H. S. Koh, T. Yong, C. K. Chan, S. Ramakrishna, Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29, 3574-3582 (2008).
[10.] C. A. Rossi, M. Pozzobon, P. De Coppi, Advances in musculoskeletal tissue engineering: moving towards therapy. Organogenesis 6, 167-172 (2010).
[11.] C. E. Sarraf, A. B. Harris, A. D. McCulloch, M. Eastwood, Tissue engineering of biological cardiovascular system surrogates. Heart, Lung and Circulation 11, 142-150 (2002).
[12.] P. M. Baptista et al., The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53, 604-617 (2011).
[13.] J. S. Lee, S.-W. Cho, Liver tissue engineering: Recent advances in the development of a bio-artificial liver. Biotechnology and Bioprocess Engineering 17, 427-438 (2012).
[14.] O. G. Bhalala, M. Srikanth, J. A. Kessler, The emerging roles of microRNAs in CNS injuries. Nature reviews. Neurology 9, 328-339 (2013).
[15.] L. R. Robinson, Traumatic injury to peripheral nerves. Muscle & Nerve 23, 863-873 (2000).
[16.] C. A. Taylor, D. Braza, J. B. Rice, T. Dillingham, The Incidence of Peripheral Nerve Injury in Extremity Trauma. American Journal of Physical Medicine & Rehabilitation 87, 381-385 (2008).
[17.] X. Gu, Progress and perspectives of neural tissue engineering. Frontiers of Medicine 9, 401-411 (2015).
[18.] M. T. Fitch, J. Silver, CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Experimental Neurology 209, 294-301 (2008).
[19.] M. T. Filbin, Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nature Reviews Neuroscience 4, 703-713 (2003).
[20.] R. Y. Tam, T. Fuehrmann, N. Mitrousis, M. S. Shoichet, Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology 39, 169 (2013).
[21.] K. S. Straley, C. W. P. Foo, S. C. Heilshorn, Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. Journal of Neurotrauma 27, 1-19 (2010).
[22.] P. Sensharma, G. Madhumathi, R. D. Jayant, A. K. Jaiswal, Biomaterials and cells for neural tissue engineering: Current choices. Materials Science and Engineering: C 77, 1302-1315 (2017).
[23.] R. V. Shannon, Advances in auditory prostheses. Current Opinion in Neurology 25, 61-66 (2012).
[24.] R. L. McCreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chemical Reviews 108, 2646-2687 (2008).
[25.] D. M. Andrade et al., Long-term follow-up of patients with thalamic deep brain stimulation for epilepsy. Neurology 66, 1571 (2006).
[26.] S. Arcot Desai, C.-A. Gutekunst, S. M. Potter, R. E. Gross, Deep brain stimulation macroelectrodes compared to multiple microelectrodes in rat hippocampus. Frontiers in neuroengineering 7, 16-16 (2014).
[27.] Andres M. Lozano, N. Lipsman, Probing and Regulating Dysfunctional Circuits Using Deep Brain Stimulation. Neuron 77, 406-424 (2013).
[28.] J. L. Collinger et al., Neuroprosthetic technology for individuals with spinal cord injury. The journal of spinal cord medicine 36, 258-272 (2013).
[29.] R. K. Shepherd, M. N. Shivdasani, D. A. X. Nayagam, C. E. Williams, P. J. Blamey, Visual prostheses for the blind. Trends in Biotechnology 31, 562-571 (2013).
[30.] U. A. Aregueta-Robles, A. J. Woolley, L. A. Poole-Warren, N. H. Lovell, R. A. Green, Organic electrode coatings for next-generation neural interfaces. Frontiers in Neuroengineering 7, (2014).
[31.] B. S. Wilson, M. F. Dorman, Cochlear implants: a remarkable past and a brilliant future. Hearing research 242, 3-21 (2008).
[32.] H. Würbel, S. H. Richter, J. P. Garner, Reply to: 'Reanalysis of Richter et al. (2010) on reproducibility'. Nature Methods 10, 374 (2013).
[33.] R. A. Green et al., Performance of conducting polymer electrodes for stimulating neuroprosthetics. Journal of Neural Engineering 10, 016009 (2013).
[34.] R. Balint, N. J. Cassidy, S. H. Cartmell, Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia 10, 2341-2353 (2014).
[35.] B. Lakard et al., Effect of ultrasounds on the electrochemical synthesis of polypyrrole, application to the adhesion and growth of biological cells. Bioelectrochemistry 75, 148-157 (2009).
[36.] L. Ghasemi-Mobarakeh et al., Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine 5, e17-e35 (2011).
[37.] L. Huang et al., Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications. Biomacromolecules 9, 850-858 (2008).
[38.] T. J. Rivers, T. W. Hudson, C. E. Schmidt, Synthesis of a Novel, Biodegradable Electrically Conducting Polymer for Biomedical Applications. Advanced Functional Materials 12, 33-37 (2002).
[39.] A. Kotwal, C. E. Schmidt, Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22, 1055-1064 (2001).
[40.] J. Y. Lee, C. A. Bashur, A. S. Goldstein, C. E. Schmidt, Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30, 4325-4335 (2009).
[41.] G. G. Wallace, M. Smyth, H. Zhao, Conducting electroactive polymer-based biosensors. TrAC Trends in Analytical Chemistry 18, 245-251 (1999).
[42.] D.-H. Kim, S. M. Richardson-Burns, J. L. Hendricks, C. Sequera, D. C. Martin, Effect of Immobilized Nerve Growth Factor on Conductive Polymers: Electrical Properties and Cellular Response. Advanced Functional Materials 17, 79-86 (2007).
[43.] R. Ravichandran, S. Sundarrajan, J. R. Venugopal, S. Mukherjee, S. Ramakrishna, Applications of conducting polymers and their issues in biomedical engineering. Journal of the Royal Society, Interface 7 Suppl 5, S559-S579 (2010).
[44.] J. Y. Wong, R. Langer, D. E. Ingber, Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 91, 3201-3204 (1994).
[45.] B. C. Thompson et al., Conducting polymers, dual neurotrophins and pulsed electrical stimulation — Dramatic effects on neurite outgrowth. Journal of Controlled Release 141, 161-167 (2010).
[46.] Z. Zhang et al., Electrically Conductive Biodegradable Polymer Composite for Nerve Regeneration: Electricity-Stimulated Neurite Outgrowth and Axon Regeneration. Artificial Organs 31, 13-22 (2007).
[47.] X. Liu, Z. Yue, M. J. Higgins, G. G. Wallace, Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials 32, 7309-7317 (2011).
[48.] X. Liu, K. J. Gilmore, S. E. Moulton, G. G. Wallace, Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. Journal of Neural Engineering 6, 065002 (2009).
[49.] S. Geetha, C. R. K. Rao, M. Vijayan, D. C. Trivedi, Biosensing and drug delivery by polypyrrole. Analytica Chimica Acta 568, 119-125 (2006).
[50.] J. J. Langer et al., Polyaniline biosensor for choline determination. Surface Science 573, 140-145 (2004).
[51.] X. Cui, D. C. Martin, Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors and Actuators B: Chemical 89, 92-102 (2003).
[52.] S.-M. Kim et al., High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording. NPG Asia Materials 10, 255-265 (2018).
[53.] C. E. Schmidt, V. R. Shastri, J. P. Vacanti, R. Langer, Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences of the United States of America 94, 8948-8953 (1997).
[54.] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Advanced Materials 12, 481-494 (2000).
[55.] J. Rivnay et al., High-performance transistors for bioelectronics through tuning of channel thickness. Science advances 1, e1400251-e1400251 (2015).
[56.] S. M. Richardson-Burns et al., Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28, 1539-1552 (2007).
[57.] J. Ouyang, “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 34, 423-436 (2013).
[58.] D.-H. Kim, J. Xiao, J. Song, Y. Huang, J. A. Rogers, Stretchable, Curvilinear Electronics Based on Inorganic Materials. Advanced Materials 22, 2108-2124 (2010).
[59.] T. Sekitani et al., A Rubberlike Stretchable Active Matrix Using Elastic Conductors. Science 321, 1468 (2008).
[60.] C. M. Stafford et al., A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nature Materials 3, 545-550 (2004).
[61.] J. A. Rogers, T. Someya, Y. Huang, Materials and Mechanics for Stretchable Electronics. Science 327, 1603 (2010).
[62.] J. Viventi et al., A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology. Science Translational Medicine 2, 24ra22 (2010).
[63.] D.-H. Kim et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature materials 9, 511-517 (2010).
[64.] D. Tahk, H. H. Lee, D.-Y. Khang, Elastic Moduli of Organic Electronic Materials by the Buckling Method. Macromolecules 42, 7079-7083 (2009).
[65.] Y. Zhao, X. Huang, Mechanisms and Materials of Flexible and Stretchable Skin Sensors. Micromachines 8, 69 (2017).
[66.] I. Bernardeschi et al., A soft, stretchable and conductive biointerface for cell mechanobiology. Biomedical Microdevices 17, 46 (2015).
[67.] D.-H. Kim, P. K. Wong, J. Park, A. Levchenko, Y. Sun, Microengineered Platforms for Cell Mechanobiology. Annual Review of Biomedical Engineering 11, 203-233 (2009).
[68.] I. A. Janson, A. J. Putnam, Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. Journal of biomedical materials research. Part A 103, 1246-1258 (2015).
[69.] J. Condeelis, J. E. Segall, Intravital imaging of cell movement in tumours. Nature Reviews Cancer 3, 921-930 (2003).
[70.] M. A. Wood, Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. Journal of the Royal Society, Interface 4, 1-17 (2007).
[71.] M. J. Dalby, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, A. S. G. Curtis, Polymer-Demixed Nanotopography: Control of Fibroblast Spreading and Proliferation. Tissue Engineering 8, 1099-1108 (2002).
[72.] D. Liang, B. S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced drug delivery reviews 59, 1392-1412 (2007).
[73.] E. K. F. Yim et al., Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26, 5405-5413 (2005).
[74.] D.-H. Kim et al., Guided Three-Dimensional Growth of Functional Cardiomyocytes on Polyethylene Glycol Nanostructures. Langmuir 22, 5419-5426 (2006).
[75.] A. I. Teixeira, P. F. Nealey, C. J. Murphy, Responses of human keratocytes to micro- and nanostructured substrates. Journal of Biomedical Materials Research Part A 71A, 369-376 (2004).
[76.] A. I. Teixeira, G. A. Abrams, P. J. Bertics, C. J. Murphy, P. F. Nealey, Epithelial contact guidance on well-defined micro- and nanostructured substrates. Journal of Cell Science 116, 1881 (2003).
[77.] A. Rajnicek, S. Britland, C. McCaig, Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. Journal of Cell Science 110, 2905 (1997).
[78.] K. Metavarayuth, P. Sitasuwan, X. Zhao, Y. Lin, Q. Wang, Influence of Surface Topographical Cues on the Differentiation of Mesenchymal Stem Cells in Vitro. ACS Biomaterials Science & Engineering 2, 142-151 (2016).
[79.] G. Huang et al., Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews 117, 12764-12850 (2017).
[80.] P. Clark, P. Connolly, A. S. Curtis, J. A. Dow, C. D. Wilkinson, Cell guidance by ultrafine topography in vitro. Journal of Cell Science 99, 73 (1991).
[81.] G. Abagnale et al., Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials 61, 316-326 (2015).
[82.] M. R. Lee et al., Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31, 4360-4366 (2010).
[83.] F. Pan et al., Topographic effect on human induced pluripotent stem cells differentiation towards neuronal lineage. Biomaterials 34, 8131-8139 (2013).
[84.] G. Abagnale et al., Surface Topography Guides Morphology and Spatial Patterning of Induced Pluripotent Stem Cell Colonies. Stem cell reports 9, 654-666 (2017).
[85.] D. Vaudry, P. J. S. Stork, P. Lazarovici, L. E. Eiden, Signaling Pathways for PC12 Cell Differentiation: Making the Right Connections. Science 296, 1648 (2002).
[86.] Y.-J. Chang, C.-M. Hsu, C.-H. Lin, M. S.-C. Lu, L. Chen, Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling. Biochimica et Biophysica Acta (BBA) - General Subjects 1830, 4130-4136 (2013).
[87.] G. T. Somogyi, W. C. de Groat, Function, signal transduction mechanisms and plasticity of presynaptic muscarinic receptors in the urinary bladder. Life Sciences 64, 411-418 (1999).
[88.] G. M. Brodeur et al., Trk receptor expression and inhibition in neuroblastomas. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 3244-3250 (2009).
[89.] G. Uceda et al., Ca(2+)-activated K+ channels modulate muscarinic secretion in cat chromaffin cells. The Journal of physiology 454, 213-230 (1992).
[90.] L. A. Greene, A. S. Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America 73, 2424-2428 (1976).
[91.] J. Shao et al., MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat. Molecular pain 12, 1744806916671523 (2016).
[92.] D. J. Lipomi et al., Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates. Chemistry of Materials 24, 373-382 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74782-
dc.description.abstract隨著組織工程的發展,治療神經系統受損的方法已經進入新的世代。許多研究團隊致力於以創新合成方式製成生醫材料以模擬人體中的微環境,除此之外,細胞的生物測試也被納入研究的項目之一,以測試生醫材料的有效性。
在微環境中,細胞會受到化學及物理性因素影響而有不同的表現。其中一個重要的決定性因素就是細胞外間質,值得注意的是帶有微結構的表面也能夠深深地影響細胞。除了將基質做改質之以外,也能夠利用物理方面的刺激影響細胞。在這些刺激當中,電刺激在神經分化上扮演著重要角色。然而,製造具有圖樣之導電表面常常是高時間成本或所費不貲,在本研究中,我們將提供一個簡易的方式製造帶有微皺褶結構且具導電特性的薄膜以誘導細胞神經分化。
我們選用PEDOT:PSS導電高分子作為薄膜的主成分,這是因為相對於其他導電高分子,PEDOT:PSS具有更高的導電性以及低細胞毒性,再者,PEDOT:PSS在細胞培養液中能夠有強烈的離子交換作用,進而促進細胞的增生。
在已拉伸的PDMS基質上均勻塗佈導電高分子於表面,在釋放應力的瞬間,微皺褶結構因為壓縮力而產生。本實驗中我們共測試了0%、 20%以及40%的組別,並對其做了表面材料分析以及生物測試。
zh_TW
dc.description.abstractThe treatment of nerve injuries has taken a step to another stage with the development of tissue engineering. Along with the novel synthetic strategy, different kinds of biomaterials have been devised to mimic the microenvironment in the human body. Also, cells are incorporated with the scaffolds to enhance the efficacy.
Cells’ performance can be modulated by chemical and physical features in the microenvironment. A crucial determinant of cell behavior and function is the extracellular matrix (ECM). It is worthy to notice that the structural features of the ECM can profoundly affect cell performance. Beside the biophysical properties of the substrates, cells can also sense and respond to a range of physical stimuli.
Among these stimuli, electrical stimulation is an especially important factor for neural differentiation. However, the fabrication of a conductive surface with the pattern is time-consuming or high costs. Here, a facile method for patterned and conductive substrates was provided.
PEDOT:PSS was elected as the conductive composition of the biomaterials in this research. Comparing to other conductive polymers, PEDOT:PSS possesses high electrical conductive and low cytotoxicity. Moreover, owing to its charge can strongly exchange with the culture medium, PEDOT:PSS is capable of promoting cell proliferation.
A micro-wrinkled film was fabricated by spin-coating PEDOT:PSS onto the pre-stretching PDMS substrate. The stretching ratio of 0%, 20%, and 40% was applied to further investigation. As the stored strain was released, a compression force would employ on the PEDOT:PSS film and the micro-wrinkles were formed. The corrugation was highly aligned, providing a suitable micro-structure for neuron extension. Moreover, electrical stimulation could be supplied via PEDOT:PSS films, introducing cells to neural differentiation.
The properties of PEDOT:PSS films with different pre-stretching ratio were investigated, including the surface topography, hydrophilicity, surface element analysis, and the electrochemical feature. Furthermore, for the bio characterization of the films, PC12 cells were seeded onto the PEDOT:PSS films and the cells’ performance, including cell morphology and gene expression, was examined.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:07:28Z (GMT). No. of bitstreams: 1
ntu-108-R06524045-1.pdf: 26706468 bytes, checksum: 148ee3093728bb88d13a744fad69b06f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Introduction to Tissue Engineering 1
1.1.1 An overview of tissue engineering 1
1.1.2 Neural tissue engineering 1
1.1.3 Neuroprosthetic device 3
1.2 Conductive polymers for neural stimulation 3
1.2.1 Conductive polymers for tissue engineering 3
1.2.2 PEDOT:PSS 5
1.2.3 An elastomer-based stretchable Bio-conductor 7
1.3 Cellular response to Biomaterials 8
1.3.1 Structural scaffolds 8
1.3.2 The effects of surface topography to neural differentiation 10
1.3.3 Cell response to electrical stimulation 11
1.3.4 PC12 cells 15
1.4 Motivation and Aims 15
1.5 Research Framework 16
Chapter 2 Materials and Methods 18
2.1 Chemicals 18
2.1.1 Micro-patterned and conductive biointerface 18
2.1.2 Cell culture 18
2.1.3 Cell Viability/Cytotoxicity 19
2.1.4 Immunocytochemistry 19
2.1.5 RT-PCR 19
2.2 Instruments 20
2.3 Solution Formula 21
2.4 Methods 22
2.4.1 Fabrication of Polydimethylsiloxane (PDMS) 22
2.4.2 Surface modification on PDMS substrate 23
2.4.3 Micro-wrinkled PEDOT:PSS film on PDMS 24
2.4.4 Electrical stimulation device and cell culture mold 24
2.4.5 PC12 cell line culture and seeding 25
2.4.6 Electrical stimulation for PC12 cells 25
2.4.7 Topography characterization of PEDOT:PSS films 26
2.4.8 Alignment analysis of patterned PEDOT:PSS 26
2.4.9 Hydrophilic/Hydrophobic investigation 26
2.4.10 Electrical characterization of PEDOT:PSS films 27
2.4.11 X-ray photoelectron spectroscopy (XPS) measurements 27
2.4.12 Biocompatibility Analysis 28
2.4.13 Cell morphology 28
2.4.14 Immunocytochemistry 29
2.4.15 RNA extraction 29
2.4.16 Reverse transcription of RNA 30
2.4.17 Real-Time polymerase chain reaction (RT PCR) 31
2.4.18 Statistical analysis 31
Chapter 3 Results and Discussion 32
3.1 Feature analysis of PEDOT:PSS films 32
3.1.1 Fabrication of PEDOT:PSS films on PDMS substrate 32
3.1.2 The formation of micro-wrinkles 33
3.1.3 Surface topography 33
3.1.4 The hydrophilicity of PEDOT:PSS films 34
3.1.5 Electrochemical properties 34
3.2 PC12 cells differentiated on PEDOT:PSS films 35
3.2.1 Biocompatibility of PEDOT:PSS films 35
3.2.2 Cell morphology and cell alignment 36
3.2.3 F-actin staining 37
3.2.4 Immunocytochemistry analysis 37
3.2.5 Gene expression 38
Chapter 4 Conclusion and Future Work 60
Chapter 5 Reference 62
dc.language.isoen
dc.subject大鼠腎上腺嗜鉻細胞瘤細胞zh_TW
dc.subject導電高分子zh_TW
dc.subject微皺褶結構zh_TW
dc.subject表面溝槽zh_TW
dc.subject神經分化zh_TW
dc.subject電刺激zh_TW
dc.subjectelectrical stimulationen
dc.subjectPEDOT:PSSen
dc.subjectmicro wrinklesen
dc.subjecttopographyen
dc.subjectPC12 cellsen
dc.subjectneural differentiationen
dc.title以簡易方式製成具微皺摺結構之導電高分子薄膜以誘導類神經細胞之分化zh_TW
dc.titleA facile method to fabricate a micro-wrinkled poly (3, 4‐ethylenedioxythiophene) promoting PC12 cells neural differentiation through electrical stimulationen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee周鶴修(Ho-Hsiu Chou),蕭育生(Yu-Sheng Hsiao),廖英志(Ying-Chih Liao)
dc.subject.keyword大鼠腎上腺嗜鉻細胞瘤細胞,導電高分子,微皺褶結構,表面溝槽,神經分化,電刺激,zh_TW
dc.subject.keywordPEDOT:PSS,micro wrinkles,topography,PC12 cells,neural differentiation,electrical stimulation,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201904353
dc.rights.note有償授權
dc.date.accepted2019-12-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
26.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved