Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74763
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann Lin)
dc.contributor.authorLequn Chenen
dc.contributor.author陳樂群zh_TW
dc.date.accessioned2021-06-17T09:07:09Z-
dc.date.available2019-12-25
dc.date.copyright2019-12-25
dc.date.issued2019
dc.date.submitted2019-12-11
dc.identifier.citation[1] 鍾惠君 and 李茹萍, 醫院常見多重抗藥菌叢護理照護重點. 護理雜誌, 2011. 58(4): p. 11-15.
[2] System, N.N.I.S., National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control, 2004. 32: p. 470-485.
[3] Parameswaran, R., et al., Intravascular catheter-related infections in an Indian tertiary care hospital. The Journal of Infection in Developing Countries, 2011. 5(06): p. 452-458.
[4] 吳宗正, 生物感測器. 1996, 生物技術, 九州出版社, 第十八章.
[5] Heineman, W.R. and W.B. Jensen, Leland c. clark jr.(1918–2005). Biosensors and Bioelectronics, 2006. 8(21): p. 1403-1404.
[6] Kavita, V., DNA biosensors—a review. J Bioeng Biomed Sci, 2017. 7: p. 222.
[7] Hiramatsu, K., et al., Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. The Journal of antimicrobial chemotherapy, 1997. 40(1): p. 135-136.
[8] Sievert, D., M. Boulton, and G. Stoltman, Staphylococcus aureus to vancomycin-United States. MMWR, 2002. 51(26): p. 567.
[9] Smith, T.L., et al., Emergence of vancomycin resistance in Staphylococcus aureus. New England Journal of Medicine, 1999. 340(7): p. 493-501.
[10] Weinstein, R.A. and S.K. Fridkin, Vancomycin-intermediate and-resistant Staphylococcus aureus: what the infectious disease specialist needs to know. Clinical Infectious Diseases, 2001. 32(1): p. 108-115.
[11] Chang, S., et al., Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. New England Journal of Medicine, 2003. 348(14): p. 1342-1347.
[12] Control, C.f.D. and Prevention, Vancomycin-resistant Staphylococcus aureus--Pennsylvania, 2002. MMWR. Morbidity and mortality weekly report, 2002. 51(40): p. 902.
[13] Control, C.f.D. and Prevention, Vancomycin-resistant Staphylococcus aureus--New York, 2004. MMWR. Morbidity and mortality weekly report, 2004. 53(15): p. 322.
[14] Nulens, E., et al., Cost of the meticillin-resistant Staphylococcus aureus search and destroy policy in a Dutch university hospital. Journal of Hospital infection, 2008. 68(4): p. 301-307.
[15] 陳貞蓉, et al., 主動鼻腔篩檢措施對加護病房 MRSA 感染率之影響. 感染控制雜誌, 2011. 21(3): p. 149-156.
[16] Hardy, K., et al., Methicillin resistant Staphylococcus aureus in the critically ill. British journal of anaesthesia, 2004. 92(1): p. 121-130.
[17] Zetola, N., et al., Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. The Lancet infectious diseases, 2005. 5(5): p. 275-286.
[18] Gladwin, M., B. Trattler, and C.S. Mahan, Clinical microbiology made ridiculously simple. 2004: MedMaster.
[19] Matsuhashi, M., et al., Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. Journal of Bacteriology, 1986. 167(3): p. 975-980.
[20] 許清曉, 抗生素的使用如何管制? 感染控制雜誌, 2005. 15(2): p. 81-87.
[21] Ramey, B.E., et al., Biofilm formation in plant–microbe associations. Current opinion in microbiology, 2004. 7(6): p. 602-609.
[22] Lawrence, J., G. Wolfaardt, and D. Korber, Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl. Environ. Microbiol., 1994. 60(4): p. 1166-1173.
[23] Lawrence, J., et al., Optical sectioning of microbial biofilms. Journal of bacteriology, 1991. 173(20): p. 6558-6567.
[24] Danese, P.N., L.A. Pratt, and R. Kolter, Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. Journal of bacteriology, 2000. 182(12): p. 3593-3596.
[25] Vleugels, M., et al., Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Transactions on Plasma Science, 2005. 33(2): p. 824-828.
[26] van Schaik, W. and T. Abee, The role of σB in the stress response of Gram-positive bacteria–targets for food preservation and safety. Current opinion in biotechnology, 2005. 16(2): p. 218-224.
[27] Knight, G., R. Nicol, and T. McMeekin, Temperature step changes: a novel approach to control biofilms of Streptococcus thermophilus in a pilot plant-scale cheese-milk pasteurisation plant. International journal of food microbiology, 2004. 93(3): p. 305-318.
[28] Marsh, E.J., H. Luo, and H. Wang, A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiology Letters, 2003. 228(2): p. 203-210.
[29] Flemming, H. and A. Leis, Encyclopedia of environmental microbiology. 2002, Wiley: New York. p. 2958-2967.
[30] 孫俊仁 and 詹明錦, 抗生素的失效-細菌快跑 (ESKAPE). 感染控制雜誌, 2011. 21(1): p. 38-43.
[31] Piechota, M., et al., Biofilm Formation by Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Strains from Hospitalized Patients in Poland. BioMed Research International, 2018. 2018: p. 7.
[32] Notomi, T., et al., Loop-mediated isothermal amplification of DNA. Nucleic acids research, 2000. 28(12): p. e63-e63.
[33] Li, J.-j., et al., Loop-Mediated Isothermal Amplification (LAMP): emergence as an alternative technology for herbal medicine identification. Frontiers in plant science, 2016. 7: p. 1956.
[34] Mori, Y., et al., Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and biophysical research communications, 2001. 289(1): p. 150-154.
[35] Wang, L., et al., Specific and rapid detection of foodborne Salmonella by loop-mediated isothermal amplification method. Food Research International, 2008. 41(1): p. 69-74.
[36] Nagamine, K., T. Hase, and T. Notomi, Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and cellular probes, 2002. 16(3): p. 223-229.
[37] Maruyama, F., et al., Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl. Environ. Microbiol., 2003. 69(8): p. 5023-5028.
[38] Freestone, I., et al., The Lycurgus cup—a roman nanotechnology. Gold bulletin, 2007. 40(4): p. 270-277.
[39] BARBER, D.J. and I.C. FREESTONE, AN INVESTIGATION OF THE ORIGIN OF THE COLOUR OF THE LYCURGUS CUP BY ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY. Archaeometry, 1990. 32(1): p. 33-45.
[40] Wood, R.W., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 1902. 18(1): p. 269.
[41] Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, 1941. 31(3): p. 213-222.
[42] Ritchie, R.H., et al., Surface-plasmon resonance effect in grating diffraction. Physical Review Letters, 1968. 21(22): p. 1530.
[43] Kretschmann, E. and H. Raether, Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 1968. 23(12): p. 2135-2136.
[44] Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 1968. 216(4): p. 398-410.
[45] Maier, S.A., Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media.
[46] Homola, J., Electromagnetic theory of surface plasmons, in Surface plasmon resonance based sensors. 2006, Springer. p. 3-44.
[47] Piliarik, M. and J. Homola, SPR sensor instrumentation, in Surface Plasmon Resonance Based Sensors. 2006, Springer. p. 95-116.
[48] Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1): p. 3-15.
[49] Homola, J. and M. Piliarik, Surface plasmon resonance (SPR) sensors, in Surface plasmon resonance based sensors. 2006, Springer. p. 45-67.
[50] Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. nature, 2003. 424(6950): p. 824.
[51] Löfås, S., et al., Bioanalysis with surface plasmon resonance. Sensors and Actuators B: Chemical, 1991. 5(1-4): p. 79-84.
[52] Sjoelander, S. and C. Urbaniczky, Integrated fluid handling system for biomolecular interaction analysis. Analytical chemistry, 1991. 63(20): p. 2338-2345.
[53] Instrument, B. Principle of SPR detection: Intensity profile and shift of the SPR angle. [
] [cited 2014 December]; Available from: http://biosensingusa.com/technical-notes/technical-note-101-principle-spr-detection-intensity-profile-shift-spr-angle/.
[54] Yang, K., et al. Using loop-mediated isothermal DNA amplification (LAMP) and spectral surface plasmon resonance (SPR) to detect methicillin-resistance S. aureus (MRSA). in 2012 International Conference on Biomedical Engineering and Biotechnology. 2012. IEEE.
[55] Chuang, T.-L., et al., A polycarbonate based surface plasmon resonance sensing cartridge for high sensitivity HBV loop-mediated isothermal amplification. Biosensors and Bioelectronics, 2012. 32(1): p. 89-95.
[56] MIT. Material Property Database. Available from: http://www.mit.edu/~6.777/matprops/pmma.htm.
[57] Eiken Chemical Co., L. Design of primers. Available from: http://loopamp.eiken.co.jp/e/lamp/rt_index.html.
[58] Wang, X.-R., et al., Rapid detection of Staphylococcus aureus by loop-mediated isothermal amplification. Applied biochemistry and biotechnology, 2015. 175(2): p. 882-891.
[59] Ma, C., et al., A novel method to control carryover contamination in isothermal nucleic acid amplification. Chemical Communications, 2017. 53(77): p. 10696-10699.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74763-
dc.description.abstract生物感測器是近年來研究的熱門領域,表面電漿子共振應用於生物感測對生物分子進行偵測,由於實驗操作相對複雜,受限於操作人員培訓之繁瑣,無法真正普及商業用途。同時生物檢測方法不斷的發展,根據不同的檢測需求可以找到不同的檢測方法進行優化,但生物檢測往往受限於檢測時間較長且操作繁瑣,對於日益擴大的病患需求,加快檢測速度的方式顯得更為急迫。
本研究提出以共振角度位移量測的表面電漿子共振與LAMP生物檢測方法相結合以加快檢測之速率。本論文對表面電漿子共振原理進行研究應用,嘗試利用LAMP檢測核酸分子的方式與表面電漿子共振結合,提出SPR-LAMP的機構,並以此機構應用於抗甲氧西林金黃色葡萄球菌的檢測。本研究從機構設計和生物設計兩方面進行介紹,並對二者結合所作之機構改進,設計了一系列的實驗對系統性能進行驗證。本研究從機構設計和生物設計兩方面進行介紹,並對二者結合所作之機構改進,設計了一系列的實驗對系統性能進行驗證。該系統架構具有較好的穩定性,通過實驗量測系統之角度解析度為0.0154°,對應系統之偵測極限為1.23×10-4 RIU,敏感度為125°/RIU。LAMP於SPR機台之訊號可大致在15 min判定結果。針對實驗結果,對存在污染的原因與解決方式進行討論並提出了未來改進之方向。
zh_TW
dc.description.abstractSurface Plasmon Resonance (SPR) biosensor is a widely used from biological studies to clinical diagnosis application. In the situation of growing needs for real time detection, the SPR system has high potential in the early diagnosis. We proposed a SPR system based on angle shift which is more stable and easier to be used when different samples were tested. The SPR system integrated with isothermal amplification can be used in real time detection for DNA amplification.
The mechanism of SPR was discussed and the design of our system is well explained in this thesis. Also, we made an intensive theoretical study of Loop mediated isothermal amplification (LAMP) and attempted to conduct the LAMP on SPR. Finally, we adapted the SPR system to amplify the gene mecA which is the marker of Methicillin-Resistant Staphylococcus Aureus (MRSA) within an hour. The angular resolution of our system is 0.0154°, the limit of detection is 1.23×10-4 RIU and the sensitivity is 125°/RIU. The signal of the LAMP can be detected by our SPR system. According to the problems showed during the experiment, reasons were discussed, conclusions were summarized and so are the future work.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:07:09Z (GMT). No. of bitstreams: 1
ntu-108-R06945044-1.pdf: 14536306 bytes, checksum: 4c3201ded54e993bc86f4bd49ef0e60d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致 謝 I
摘 要 II
ABSTRACT III
目 錄 IV
圖目錄 VI
表目錄 X
第1章 緒 論 1
1.1 研究背景 1
1.1.1 醫療領域的細菌感染 1
1.1.2 抗生素濫用與細菌耐藥性 2
1.1.3 生物感測器的發展 3
1.2 研究動機 4
1.3 研究貢獻 5
1.4 論文架構 6
第2章 基本原理與文獻回顧 7
2.1 MRSA的耐藥機制與檢測 7
2.1.1 醫療領域的細菌感染 7
2.1.2 基因組機制 7
2.1.3 MRSA的檢測方式 8
2.1.4 生物被膜 9
2.2 LAMP檢測原理和優勢與缺陷 11
2.2.1 LAMP原理 11
2.2.2 LAMP與其他DNA擴增方式比較 15
2.3 SPR生物感測技術 17
2.4 共振角度位移量測 23
2.5 SPR-LAMP 25
第3章 系統設計 26
3.1 感測器軟硬體系統設計 26
3.1.1 光學系統設計 26
3.1.2 晶片、載台與流體系統設計 31
3.1.3 加熱模組與溫度控制 35
3.2 LabVIEW程式設計 35
3.3 LAMP反應設計 37
3.3.1 DNA模板獲取 37
3.3.2 LAMP反應設計 38
3.3.3 凝膠電泳 39
第4章 量測與功能實現 41
4.1 光學系統測試 41
4.1.1 影像測試 41
4.1.2 系統穩定性、敏感度和解析度 41
4.2 Primer性能測試 44
4.3 SPR-LAMP於研究系統上的測試 45
4.4 LAMP污染問題的討論 48
4.5 LAMP污染排除 49
第5章 結論與展望 51
參考文獻 52
dc.language.isozh-TW
dc.subject生物感測器zh_TW
dc.subject恆溫環狀擴增法zh_TW
dc.subject抗甲氧西林金黃色葡萄球菌zh_TW
dc.subject共振角度位移zh_TW
dc.subject表面電漿子共振zh_TW
dc.subject生物被膜zh_TW
dc.subjectSurface plasmon resonanceen
dc.subjectAngle-shiften
dc.subjectBiosensoren
dc.subjectLoop mediated isothermal amplificationen
dc.subjectMethicillin-resistant staphylococcus aureusen
dc.subjectBiofilmen
dc.title基於共振角度位移量測之表面電漿子共振生物感測器應用於抗青霉素金黃色葡萄球菌的恆溫擴增即時偵測zh_TW
dc.titleAn Angle Shift-Based Surface Plasmon Resonance System for Real-Time Methicillin-Resistant Staphylococcus Aureus Detection by Loop-Mediated Isothermal Amplificationen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林致廷(Chih-Ting Lin),施博仁(Po-Jen Shih)
dc.subject.keyword表面電漿子共振,共振角度位移,生物感測器,恆溫環狀擴增法,抗甲氧西林金黃色葡萄球菌,生物被膜,zh_TW
dc.subject.keywordSurface plasmon resonance,Angle-shift,Biosensor,Loop mediated isothermal amplification,Methicillin-resistant staphylococcus aureus,Biofilm,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201904178
dc.rights.note有償授權
dc.date.accepted2019-12-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
14.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved