請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74759完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪淑蕙(Shu-Huei Hung) | |
| dc.contributor.author | Jingyao Wang | en |
| dc.contributor.author | 汪靜瑤 | zh_TW |
| dc.date.accessioned | 2021-06-17T09:07:04Z | - |
| dc.date.available | 2021-01-15 | |
| dc.date.copyright | 2020-01-15 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-12-12 | |
| dc.identifier.citation | Aki, K., 1969. Analysis of the seismic coda of local earthquakes as scattered waves, J. Geophys. Res., 74 (2), 615– 631, doi: 10.1029/JB074i002p00615.
Aki K. , B. Chouet, 1975. Origin of coda waves: Source, attenuation, and scattering effects. J. Geophys. Res., Vol. 80, No. 23, 3322-3342 Aki K., Scattering and attenuation of shear waves in the lithosphere, 1980a. J. Geophys. Res., 85, 6496–6504.. Aki K., 1980b. Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth planet. Inter. , 21, 50–60.. A. Nur, 1971. Viscous phases in rocks and the low velocity zone. J. Geophys. Res., 76, pp. 1270-1278 Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F. , Moschetti, M. P., Shapiro, N. M. and Yang, Y., 2007. Processing seismic ambient noise data to obtain reliable broad‐band surface wave dispersion measurements. Geophys. J. Int., 169: 1239-1260. doi:10.1111/j.1365-246X.2007.03374.x Calvet, M., Margerin, L., 2013. Lapse-time dependence of coda Q: anisotropic multiple-scattering models and application to the Pyrenees. Bull. Seismol. Soc. Am. 103 (3), 1993–2010. Calvet, M, Margerin, L., S.-H. Hung, 2019. Strong lateral variations of seismic attenuation properties in Taiwan. Geophy. Res. Abstracts, 21, EGU2019-7703, EGU General Assembly 2019 Carcolé, E., Sato, H., 2010. Spatial distribution of scattering loss and intrinsic absor-ption of short-period S waves in the lithosphere of Japan on the basis of the Multiple Lapse Time Window Analysis of Hi-net data. Geophys. J. Int. 180 (1), 268–290. Chen P., O. W. Nuttli, 1984. Estimates of magnitudes and short-period wave attenuation of Chinese earthquakes from Modified Mercalli intensity data. Bull. Seismol. Soc. Am.; 74 (3): 957–968. doi: https://doi.org/ Chen, K. C. & Shin, T.-C. & Wang, J.-H., 1989. Estimates of Coda Q in Taiwan. Proceedings - Geol. Soc. China. 32. 339-353. Chen, K.J., 1998. S‐Wave attenuation structure in the Taiwan area and its correlation to seismicity, Terr. Atmos. Ocean., 9, 97–118. Chen K.J., C.H. Lin, C.J. Hsieh, 2002. Mapping seismic attenuation structures of the volcanic area in northern Taiwan. West. Pac. Earth Sci., 2, pp. 273-290 Chen, Y.‐N., Gung, Y., You, S.‐H., Hung, S.‐H., Chiao, L.‐Y., Huang, T.‐Y., Chen, Y.‐L., Liang, W.‐T., and Jan, S., 2011. Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM, Geophys. Res. Lett., 38, L04305, doi:10.1029/2010GL046290. Chen C.-T., Y.-C. Chan, C.-H. Lo, C.-Y. Lu, 2016. Growth of mica porphyroblast under low-grade metamorphism – a Taiwanese case using in-situ 40Ar/39Ar laser microprobe analyses, J. Struct. Geol., 92 , pp. 1-11 Cheng, W. B., 2013. Three‐dimensional seismic attenuation structure beneath the Taiwan region and its tectonic implication. J. Asian Earth Sci., 65(65), 86–99. Chung, JK., Chen, YL. & Shin, TC, 2009. Spatial distribution of coda Q estimated from local earthquakes in Taiwan area. Earth Planet Sp., 61: 1077. doi: https://doi.org/10.1186/BF03352958 Cupillard P., Y. Capdeville, 2010. On the amplitude of surface waves obtained by noise correlation and the capability to recover the attenuation: a numerical approach, Geophys. J. Int., 181 (3), Pages 1687–1700, doi: https://doi.org/10.1111/j.1365-246X.2010.04586.x Dai W.-P., 2018. Temporal variations of crustal properties induced by the 2013 Ruisui, Taiwan earthquake from coda wave interferometry with ambient seismic and strain fields, Master thesis, National Taiwan University, Taipei, Taiwan. Der Z. A., Thomas W. McElfresh, Anne O'Donnell, 1982. An investigation of the regional variations and frequency dependence of anelastic attenuation in the mantle under the United States in the 0.5–4 Hz band, Geophys. J. Int., 69(1), 67–99, doi: https://doi.org/10.1111/j.1365-246X.1982.tb04936.x E. Del P., J. Ibanez, J. Morales, A. Akinci, R. Maresca, 1995. Measurements of intrinsic and scattering seismic attenuation in the crust. Bull. Seismol. Soc. Am.; 85 (5): 1373–1380. https://doi.org/ Ernst, W. G., Ho, C. S. and Liou, J. G. 1985. “Rifting, drifting, and crustal accretion in the Taiwan sector of the Asiatic continental margin”. In Tectonostratigraphic terranes of the circum-Pacific region, Earth Science Series, no. 1 Edited by: Howell, D. 375–389. Circum Pacific Energy and Mineral Resource. Fehler, M., Hoshiba, M., Sato, H., Obara, K., 1992. Separation of scattering and intrinsic attenuation for the Kanto–Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance. Geophys. J. Int. 108 (3), 787–800. Fehler, M. & Sato, H., 2003. Coda. Pure appl. geophys, 160: 541. https://doi.org/10.1007/PL00012549 Golberg, J.M. & Leyreloup, A.F., 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France), Contr. Mineral. and Petrol, 104: 194. doi: https://doi.org/10.1007/BF00306443 Grand, S.P.; Hilst, R.D. van der; Widiyantoro, S., 1997. Global seismic tomography: a snapshot of convection in the earth. Geol. Soc. Am. Today, 7 (4) Hennino R. , Trégourès N., Shapiro N.M., Margerin L., Campillo M., Van Tiggelen B.A., Weaver R.L., 2001. Observation of equipartition of seismic waves, Phys. Rev. Lett. , 86(15), 3447–3450. H.-H. Huang et al. 2014. Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth. Planet. Sc. Lett., 392 (2014) 177–191. Ho, C. S. 1982. Tectonic evolution of Taiwan—explanatory text of the tectonic map of Taiwan, Taipei, Taiwan: MOEA, ROC. 126 p Hoshiba M., 1993. Separation of scattering attenuation and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope, J. Geophys. Res. , 98, 15 809–15 824.. Hsieh and Yen, 2016. Three-dimensional density structures of Taiwan and tectonic implications based on the analysis of gravity data, J. Asian Earth Sci., 124 (2016) 247–259 Huang T.Y., Y. Gung, B.Y. Kuo, L.Y. Chiao, Y.N. Chen, 2015. Layered deformation in the Taiwan orogeny, Science, 349, pp. 720-723 Jackson D.D., D.L. Anderson, 1970. Physical mechanism of seismic wave attenuation. Rev. Geophys. Space Phys., 8, pp. 1-63 John R. Clements, 1982. Intrinsic Q and its frequency dependence, Phys. Ear. Planet. Inter., 27 (4), 286-299, 0031-9201, doi: 10.1016/0031-9201(82)90058-9 Predein P.A., Dobrynina A.A., Tubanov T.A., German E.I., 2017. CodaNorm: A software package for the body-wave attenuation calculation by the coda-normalization method. SoftwareX 6, 30-35, doi: https://doi.org/10.1016/j.softx.2016.12.004. K.-M. Yang, S.-T. Huang, J.-C. Wu, H.-H. Ting & W.-W. Mei, 2006. Review and New Insights on Foreland Tectonics in Western Taiwan, Int. Geol., 910-941, doi : 10.2747/0020-6814.48.10.910 Ko, Y.‐T., Kuo, B.‐Y., and Hung, S.‐H., 2012. Robust determination of earthquake source parameters and mantle attenuation, J. Geophys. Res., 117, B04304, doi:10.1029/2011JB008759. Lamarche, J., Lavenu, A.P., Gauthier, B.D., Guglielmi, Y., Jayet, O., 2012. Relationships between fracture patterns geodynamics and mechanical stratigraphy in carbonates (South-East Basin France). Tectonophysics 581, 231–245. Larose E., Planès T., Rossetto V., Margerin L., 2010. Locating a small change in a multiple scattering environment Appl. Phys. Lett. 96, 204101, doi: 10.1063/1.3431269 Larose E., S. Carrière, C. Voisin, P. Bottelin, L. Baillet, P. Guéguen, F. Walter, D. Jongmans, B. Guillier, S. Garambois, F. Gimbert, C. Massey, 2015. Environmental seismology: what can we learn on earth surface processes with ambient noise. J. Appl. Geophys., 116, pp. 62-74 Lawrence, J. F., and Prieto, G. A., 2011. Attenuation tomography of the western United States from ambient seismic noise, J. Geophys. Res., 116, B06302, doi: 10.1029/2010JB007836. Lin, C., 2002. Active continental subduction and crustal exhumation: the Taiwan orogeny. Terra Nova, 14: 281-287. doi:10.1046/j.1365-3121.2002.00421.x Lobkis O.I., Weaver R.L., 2001. On the emergence of the green’s function in the correlations of a diffuse field, J. acoust. Soc. Am. , 110(6), 3011–3017. Margerin, L., Planès, T., Mayor, J., Calvet, M., 2016. Sensitivity kernels for coda-wave interferometry and scattering tomography: theory and numerical evaluation in two-dimensional anisotropically scattering media. Geophys. J. Int. 204 (1), 650–666. Margerin, L., Campillo, M., Tiggelen, B., 1998. Radiative transfer and diffusion of waves in a layered medium: new insight into coda Q. Geophys. J. Int. 134 (2), 596–612. Mayor J., M. Calvet, L. Margerin, O. Vanderhaeghe , P. Traversa. 2016. Crustal structure of the Alps as seen by attenuation tomography. Earth. Planet. Sc. Lett. 439 (2016) 71–80. Mayor, J., Margerin, L., Calvet, M., 2014. Sensitivity of coda waves to spatial variations of absorption and scattering: radiative transfer theory and 2-D examples. Geophys. J. Int. 197, 1117–1137. Obermann, A., Kraft, T., Larose, E., and Wiemer, S., 2015. Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). J. Geophys. Res. Solid Earth, 120, 4301– 4316. doi: 10.1002/2014JB011817. Obermann A., T. Planès, C. Hadziioannou, M. Campillo, 2016. Lapse-time-dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media, Geophys. J. Int., 207 (1), 59–66, doi: https://doi.org/10.1093/gji/ggw264 Prieto, G. A., Lawrence, J. F., and Beroza, G. C., 2009. Anelastic Earth structure from the coherency of the ambient seismic field, J. Geophys. Res., 114, B07303, doi:10.1029/2008JB006067. Reasenberg, P., Ellsworth, W., and Walter, A., 1980,.Teleseismic evidence for a low‐velocity body under the Coso Geothermal Area, J. Geophys. Res., 85( B5), 2471– 2483, doi:10.1029/JB085iB05p02471. Sato, H., Fehler, M.C., Maeda, T., 2012. Seismic Wave Propagation and Scattering in the Heterogeneous Earth, vol. 484. Springer. Seats, K. J., Lawrence, J. F. and Prieto, G. A., 2012. Improved ambient noise correlation functions using Welch's method. Geophys. J. Int., 188: 513-523. doi:10.1111/j.1365-246X.2011.05263.x Seno, T., Stein, S., and Gripp, A. E., 1993. A model for the motion of the Philippine Sea Plate consistent with NUVEL‐1 and geological data, J. Geophys. Res., 98( B10), 17941– 17948, doi:10.1029/93JB00782. Sens-Schönfelder, C., Margerin, L., Campillo, M., 2009. Laterally heterogeneous scat- tering explains Lg blockage in the Pyrenees. J. Geophys. Res., Solid Earth 114 (B7). Lobkis, O.I. and Weaver, R.L., 2001. On the Emergence of the Green’s Function in the Correlations of Diffuse Field. J. Acous. Soc. Am., 110, 3011-3017. doi: https://doi.org/10.1121/1.1417528 Shapiro, N. M., M. Campillo, L. Margerin, S. K. Singh, V. Kostoglodov, and J. Pacheco, 2000. The energy partitioning and the diffusive character of the seismic coda, Bull. Seismol. Soc. Am. 90, 655–665. Shapiro, N. M., and Campillo, M., 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614, doi:10.1029/2004GL019491. Shapiro N. M., M. Campillo, L. Stehly, M. H. Ritzwoller, 2005. High-resolution surface-wave tomography from ambient seismic noise. Science 307, 1615–1618. Sibuet J.-C., S.-K. Hsu, 2004. How was Taiwan created?, Tectonophysics, 379, pp. 159-181 Sibuet, JC., Hsu, S.-K., Normand, 2004. A. Mar Geophys Res, 25: 95. doi: https://doi.org/10.1007/s11001-005-0736-2 Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan, Geol. Soc. China Mem., 4, 67–89 Teng L.S., 1990. Geotectonic evolution of Late Cenozoic arc continent collision in Taiwan. Tectonophysics, 183, pp. 57-76, doi: 10.1016/0040-1951(90)90188-E Teng L.S., 1996, Extensional collapse of the northern Taiwan mountain belt. Geology ; 24 (10): 949–952. Van Avendonk H.J.A., H. Kuo-Chen, K.D. McIntosh, L.L. Lavier, D.A. Okaya, F.T. Wu, C.Y. Wang, C.S. Lee, C.S. Liu, 2014. Deep crustal structure of an arc-continent collision: Constraints from seismic traveltimes in central Taiwan and the Philippine Sea, J. Geophys. Res., 119, 10.1002/2014JB011327 Yu T.‐C., and Hung S.‐H., 2012, Temporal changes of seismic velocity associated with the 2006 Mw 6.1 Taitung earthquake in an arc‐continent collision suture zone, Geophys. Res. Lett., 39, L12307, doi:10.1029/2012GL051970. Ward, R. W., and Young, C.‐Y., 1980. Mapping seismic attenuation within geothermal systems using teleseisms with application to the Geysers‐Clear Lake Region, J. Geophys. Res., 85( B10), 5227– 5236, doi:10.1029/JB085iB10p05227. Walsh, J., 1995. Seismic attenuation in partially saturated rock, J. Geophys. Res., 100, 15 407–15 424. Wang C. Y., 1988. Calculations of Qs and Qp using the spectral ratio method in the Taiwan area: Proc. Geol. Soc. China 2, 13-4 Wang K.-L. , S.-L. Chung, S. Y. O’Reilly, S.-S. Sun, R. Shinjo, C.-H. Chen, 2004. Geochemical Constraints for the Genesis of Post-collisional Magmatism and the Geodynamic Evolution of the Northern Taiwan Region, J. Petrol., 45 (5), 975–1011, doi: https://doi.org/10.1093/petrology/egh001 Wang Z., Y. Fukao, D. Zhao, S. Kodaira, O.P. Mishra, A. Yamada, 2009. Structural heterogeneities in the crust and upper mantle beneath Taiwan, Tectonophysics, 476 , pp. 460-477, 10.1016/j.tecto.2009.07.018 Wang, Y.‐J., Ma, K.‐F., Mouthereau, F., & Eberhart‐Phillips, D., 2010. Three‐dimensional Qp‐and Qs‐tomography beneath Taiwan orogenic belt: Implications for tectonic and thermal structure. Geophys. J. Int., 180(2), 891–910. Weaver R.L. 2005. Information from seismic noise, Science 307,5715,1568-2569 Wegler, U., 2005. Diffusion of seismic waves in layered media: boundary conditions and analytical solutions. Geophys. J. Int. 163 (3), 1123–1135. Wennerberg L. , 1993. Multiple-scattering interpretation of coda-Q measurements, Bull. seism. Soc. Am., 83, 279–290. Wessel, P., and Smith, W. H. F., 1991. Free software helps map and display data, Eos Trans. AGU, 72 (41), 441– 446, doi: 10.1029/90EO00319. Winkler, K.W. & Nur, A., 1982. Seismic attenuation: effects of pore fluids and frictional-sliding, Geophysics, 47, 1–15. Winkler, K., and Nur, A., 1979. Pore fluids and seismic attenuation in rocks, Geophys. Res. Lett., 6 (1), 1– 4, doi:10.1029/GL006i001p00001. Wu, F.T., Rau, R.J., Salzberg, D., 1997. Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics 274, 191–220. Zhao, D., A. Hasegawa, S. Horiuchi, 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan, J. Geophys. Res., 97, 19909–19928 Zhao, D., Hasegawa, A., and Kanamori, H., 1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events, J. Geophys. Res., 99( B11), 22313– 22329, doi: 10.1029/94JB01149. Zhang Y. Planès T. Larose E. Obermann A. Rospars C. Moreau G., 2016. Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam. J. acoust. Soc. Am., 139, 4, 1691-1701 We thank the Central Weather Bureau Seismograph Network (CWBSN) of Taiwan and the Broadband Array in Taiwan for Seismology (BATS) from IES, Academia Sinica for providing continuous seismic records used in our study. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74759 | - |
| dc.description.abstract | 根據前人研究顯示利用區域地震S波的尾波(coda )可以有效地量測頻率大於1 Hz 衰減值, 通常表示為尾波的衰減因子(Qc), 甚至區分地殼中的散射衰減因子(Qsc)和非彈性吸收衰減因子(Qi)。另外, 研究發現估計的值會與量測時所使用的窄頻濾波中心頻率以及所選取尾波的時間段和視窗長度相關。因區域地震的尾波訊號通常集中在高頻1 Hz以上,對於提供在小於1 Hz頻帶的觀測約束相當困難。近年來,隨著干涉地震學及周遭噪訊理論的發展,證實經由兩地震站所連續記錄的周遭噪訊計算交互相關函數(cross-correlation function)可求得反應兩站之間路徑底下構造的經驗格林函數(empirical Green’s function),除了最顯著的直達表面波外,隨後持續振盪的訊號則涵蓋在地球內部介質經多重散射的尾波,其能量的衰減速率同樣可用來測量該地區淺部地殼的衰減特征。
為研究台灣地殼的衰減特性,本論文沿用了Mayor等人在2016年利用地震S波尾波測量阿爾卑斯山地區衰減因子的方法。不同的是,我們提取兩兩測站所記錄的噪訊交互相關函數的尾波訊號,量測週期介於1到10秒近似反映非彈性衰減構造的吸收因子變化。得益于台灣廣而密集分佈全島,包含短週期、寬頻、以及強震型的永久地震測站網所提供2016年的連續記錄,計算任兩站間每天的交互相關函數並疊加整年得到近2000條站間距小於100公里內的經驗格林函數,作為估算尾波衰減因子的數據。透過中心週期為2, 4, 6 和8秒, 頻寬半寬度為1/3倍的中心頻率的窄頻濾波之後,選取不同尾波起始時間(tw)延遲時間長度(Lw)量測尾波能量的衰減速率以求得Qc。分析結果顯示當Lw固定時,Qc值沒有隨著不同tw而有明顯變化,也沒有呈現和站間距離的相關性。然而,如同地震尾波研究所觀察到的,噪訊提取的尾波所量測的Qc值同樣具有和Lw明顯的相關性,Qc值在選取較短的Lw時會隨著延遲時間加長而逐漸增加,當Lw增加到75~100秒長度時,Qc會趨近於一穩定的常數值,可近似吸收衰減因子值(Qi)。在選取最適當的tw和Lw值之後,透過依序移動短視窗內平滑的尾波能量取自然對數值對該視窗時間進行線性回歸計算出最吻合的直線斜率以換算Qc值。為了確保量測的可靠性,只有回歸擬合係數大於0.7以上測站對的保留進行下一步衰減構造側向變化的成像。由於路徑分佈相對均勻,我們將台灣劃分成均勻的網格,直接將求得Qc值的導數(Qc-1)均勻分佈到該測站對間路徑所經過的網格上,每一網格最終至少要有三條以上路徑通過,再將每個網格裡的所有分配到的Qc-1值取平均得到該點衰減值。結果顯示在四個頻帶都顯示出相似的側向變化,其中Qc在4 s的側向變化及覆蓋率最佳,其表面波尾波在該週期最能感應深度約3-5公里處地殼的衰減特性,最低值約50,出現在台灣西南部平原區,顯示有較高的吸收衰減,可能和覆蓋厚層的沉積物地層有關。 Qc值由西向東,即從西部麓山帶到雪山山脈和中央山脈逐漸增加,在中央山脈變質岩帶顯示較低的衰減特征,Qc值最高約120,出現在台灣中央山脈東南區域,推測台灣上部地殼的衰減特性和台灣造山運動所形成由西而東岩石變質度逐步增加有很大的關聯性。值得留意的是,目前我們主要是根據表面波不同頻率的群速度對S波速度在深度方向的敏感度對上部地殼及淺層地表Qc的衰減構造進行討論解釋,對於影響所量測尾波的衰減構造在空間的分佈變化仍需更進一步的研究。 | zh_TW |
| dc.description.abstract | The lapse-time dependence of the quality factor Qc measured from the S-wave coda of local earthquakes at frequencies above 1 Hz has long been proven effective to investigate separately the scattering and absorption properties of the crust. On the other hand, recent studies demonstrate that the Green’s function retrieved from the noise cross-correlation (NCF) between two stations contains a tail of multiply-scattered waves after ballistic waves like the coda of earthquakes, the decay rate of which can therefore be also exploited for mapping of subsurface attenuation structures. We follow the approach of Mayor et al. (2016) for studying the Qc variations from earthquake S-wave coda in the Alps to estimate the frequency-dependent decay rate of coda at frequencies below 1 Hz derived from the NCFs and map the lateral variations of absorption structure of the crust in Taiwan. Benefiting from the dense seismic stations distributed across Taiwan, our dataset comprises more than 2000 yearly stacked NCFs between all the available station pairs less than 100 km apart across the Taiwan island, including broad-band and short-period continuous records in 2016. The Qc is estimated from the narrow bandpass filtered coda energy centered at the periods of 2, 4, 6, and 8 s. The Qc values at certain periods determined with the fixed coda window (Lw) but different choices of coda onset time (tw) reveal no obvious trend with the inter-station distance. However, similar to the observations from the earthquake coda, the lapse-time dependence and frequency-dependence of Qc is prominently seen as Qc generally follows a transient increase with Lw at relatively short lapse times and then approaches a stabilized plateau value at Lw = 75-100 s which considered as an optimal approximation of the absorption or intrinsic attenuation quality factor Qi. After selecting proper tw and Lw to determine Qc along individual station pairs, we map the lateral variations of intrinsic attenuation by simply distributing the Qc value uniformly along the corresponding inter-station path and taking the mean values of Qc within individual 0.2*0.2 degree cells. Our results show that the Qc variation is similar in all four frequency bands while the pattern at 4s is more pronounced and the lowest (~50), implying the highest intrinsic attenuation, in the Coastal Plain of SW Taiwan covered with thick sedimentary deposits. It gradually increases toward the Western Foothills fold and thrust belt in south central Taiwan and reaches the highest (~120) in the Central Range in southeast Taiwan, which seems to be correlated with the progressive increase of the metamorphic grade in the Taiwan orogen. Further interpretation of attenuation structures based on physically-realistic coda-wave kernels are needed to reveal both lateral and depth variations of the absorption properties across complex and diverse litho-geological units in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T09:07:04Z (GMT). No. of bitstreams: 1 ntu-108-R06224116-1.pdf: 29550221 bytes, checksum: fcd788eb9cb56e3c64d0f0cde6d93761 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Content
口試委員會審定書...................................................................................2 致謝..........................................................................................................3 中文摘要...................................................................................................4 Abstract………………………………..…………………………..…….6 List of Figures…………………………………………………………..10 List of Tables……………………………………………………………12 Chapter 1. Introduction …………………..……………………..………13 1.1 Study Region and Tectonic setting ………………………..…13 1.2 Previous Studies of Crustal Attenuation ……………………..16 1.3 Motivation and Goal of the Study………………………….....21 Chapter 2 Theoretical Background...........................................................24 2.1 Earth attenuation mechanism……….…….……………..……24 2.1.1 Origin of Coda wave…………………………............24 2.1.2 Physical mechanisms of Seismic Attenuation..............25 2.2 Coda wave and Ambient Noise Cross-correlation…………….29 Chapter 3. Data and Method……………………………….…………….33 3.1 Dataset……………………………………………..…………..33 3.2 Construction of CCFs……………………..……………...........34 3.3 Procedures of Data Processing, Selection, and Qc Measurement....................................................................................37 3.3.1 Qc measurement…………………...................................41 3.3.2 Test of Qc dependence on the onset time of coda (tw)..42 3.3.3 Test of Qc dependence on the lapse-time duration of coda (Lw)................................................................................44 3.4 Mapping attenuation structure procedure……………………...47 Chapter 4. Result………….……………………………………………....49 4.1 Frequency-independent attenuation structure ……………........52 4.2 Regional variation in intrinsic attenuation structure……….......55 4.2.1 Northeastern Taiwan…………………………..55 4.2.2 Western Taiwan………………………………..57 4.2.3 Central Taiwan…………………………………59 Chapter 5. Discussion…………………………………………………….61 5.1 Path and frequency dependence of Qc measurement......................61 5.2 Comparison with Qi measured from earthquake S-wave coda......63 5.3 Comparison with S wave velocity model……………………...64 Chapter 6. Conclusion…………………………….……………………....69 Reference………………………………………………………………….70 | |
| dc.language.iso | en | |
| dc.subject | 地殼衰減構造 | zh_TW |
| dc.subject | 周遭噪訊 | zh_TW |
| dc.subject | 交互相關函數 | zh_TW |
| dc.subject | 尾波衰減因子 | zh_TW |
| dc.subject | 吸收衰減 | zh_TW |
| dc.subject | 尾波 | zh_TW |
| dc.subject | crustal attenuation structure | en |
| dc.subject | cross correlation functions | en |
| dc.subject | ambient noise | en |
| dc.subject | absorption attenuation | en |
| dc.subject | coda quality factor | en |
| dc.subject | coda | en |
| dc.title | 利用周遭噪訊交互關函數尾波成像台灣地殼衰減性質的側向變化 | zh_TW |
| dc.title | Mapping lateral variations of crustal attenuation in Taiwan from the coda of ambient noise cross correlation functions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃信樺(Hsin-Hua Huang),陳映年(Ying-Nien Chen),林侑頻(Yu-Pin Lin) | |
| dc.subject.keyword | 尾波,尾波衰減因子,吸收衰減,周遭噪訊,交互相關函數,地殼衰減構造, | zh_TW |
| dc.subject.keyword | coda,coda quality factor,absorption attenuation,ambient noise,cross correlation functions,crustal attenuation structure, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU201904363 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-12-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 28.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
