請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7474
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 關秉宗 | |
dc.contributor.author | Ke-Feng Cheng | en |
dc.contributor.author | 鄭可風 | zh_TW |
dc.date.accessioned | 2021-05-19T17:44:27Z | - |
dc.date.available | 2022-02-04 | |
dc.date.available | 2021-05-19T17:44:27Z | - |
dc.date.copyright | 2020-02-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-02 | |
dc.identifier.citation | 王作臺與許晃雄 (1994)。北半球冬季遙相關系統及東亞夏季季風研究之回顧。大氣科學,22(4),545–563。
王筱雯 (2015)。七家灣溪水文影像監測計畫。內政部營建署雪霸國家公園管理處。 李正安與黃婉如 (2018)。臺灣秋季降雨之低頻擾動變遷。臺灣師範大學地球科學系學位論文,1–56。 李俊逸 (2013)。臺灣山地集水區河川流量特徵變化:以觀測與模式取徑分析(碩士論文)。國立臺灣大學地理環境資源學研究所,臺北市。 林和駿與洪致文 (2015)。臺灣秋季與春季年代際降雨之反相位關係研究。大氣科學,43(4),301–314。 林雪美 (2004)。台灣地區近三十年自然災害的時空特性。台灣師大地理研究報告,41,99–128。 邱祈榮、梁玉琦、賴彥任與黃名媛 (2004)。臺灣地區氣候分區與應用之研究。臺灣地理資訊學刊,1,41–62。 柳榗 (1971)。臺灣植物群落分類之研究(II)臺灣高山寒原及針葉樹林群系。臺灣省林業試驗所報告第203號。 洪致文與施明甫 (2017)。台灣氣象乾旱指數的建立與嚴重乾旱事件分析。大氣科學,45(2),45–165。 徐泓 (1986)。清代台灣自然災害史料新编。臺北市:國家科學委員會。 張世振 (2006)。臺灣西南部大武山區氣候對樹輪寬度變化之影響(碩士論文)。輔英科技大學環境工程與科學系,高雄市。 張石角 (1995)。雪霸國家公園武陵地區災害敏感區之調查與防範研究。國家公園學報,6(1),1–24。 張振瑋 (2008)。太平洋大氣與海洋系統中年際至年代震盪研究(碩士論文)。中國文化大學地學研究所,臺北市。 張繡慧 (1999)。台灣北部昆欄樹樹輪對氣候因子之反映(碩士論文)。國立台灣大學地質學研究所,臺北市。 許晃雄、羅資婷、洪致文、洪志誠、李明營、陳雲蘭、…與隋中興 (2012)。氣候自然變異與年代際變化。大氣科學,40(3),249–295。 陳信豪 (2015)。利用樹輪穩定氧同位素重建台灣霧林帶歷史氣候變異(碩士論文)。國立成功大學生命科學系,臺南市。 陳姿彤 (2011)。以臺灣中部雲杉樹輪重建三百年古氣候:利用傳統樹輪及總體經驗模態分解法(碩士論文)。國立臺灣大學地質科學研究所,臺北市。 馮豐隆與詹明勳 (2005)。年輪學應用於森林與環境的關係。林學研究季刊,27(3),37–50。 黃聖焜 (2013)。應用樹輪生態學方法重建臺灣中部塔塔加地區臺灣雲杉林分動態(碩士論文)。國立臺灣大學森林環境暨資源學研究所,臺北市。 楊遠波、劉和義與呂勝由 (1997)。臺灣維管束植物簡誌─II種子植物門。臺北市:中華民國行政院農委會。 詹明勳、王亞男與葉永廉 (2005)。台灣中部塔塔加地區台灣雲杉樹輪氣候學研究過去245年氣溫與降雨量趨勢。中華林學季刊,38(1),67–82。 鄒佩珊 (1998)。台灣山區近五百年的氣候變化:樹輪寬度的證據(博士論文)。國立臺灣大學地質研究所,臺北市。 蔣麗雪 (2011)。臺灣中部威氏帝杉樹輪寬變化與當地氣候及中太平洋海面溫度之關係(碩士論文)。國立臺灣大學森林環境暨資源學研究所,臺北市。 盧孟明 (2000)。聖嬰現象與台灣異常氣候關係之探討。大氣科學,28(2),91–114。 薛鍾彜 (1948)。五十年颱風侵襲臺灣之統計(1897–1946)。臺北市:臺灣氣象所。 Akkemik, Ü., D'Arrigo, R., Cherubini, P., Köse, N., & Jacoby, G. C. (2007). Tree-ring reconstructions of precipitation and streamflow for north-western Turkey. International Journal of Climatology, 28(2), 173–183. doi:10.1002/joc.1522 Allen, K. J., Nichols, S. C., Evans, R., Cook, E. R., Allie, S., Carson, G., . . . Baker, P. J. (2015). Preliminary December–January inflow and streamflow reconstructions from tree rings for western Tasmania, southeastern Australia. Water Resources Research, 51(7), 5487–5503. doi:10.1002/2015WR017062 Ångström, A. (1935). Teleconnections of climatic changes in present time. Geografiska Annaler, 17(3-4), 242–258. doi:10.1080/20014422.1935.11880600 Arpe, K., Bengtsson, L., Golitsyn, G. S., Mokhov, I. I., Semenov, V. A., & Sporyshev, P. V. (2000). Connection between Caspian Sea level variability and ENSO. Geophysical research letters, 27(17), 2693–2696. Ashok, K., Behera, S. K., Rao, S. A., Weng, H., & Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans, 112(C11). Axelson, J. N., Sauchyn, D. J., & Barichivich, J. (2009). New reconstructions of streamflow variability in the South Saskatchewan River Basin from a network of tree ring chronologies, Alberta, Canada. Water Resources Research, 45(9). Bégin, Y. (2000). Reconstruction of subarctic lake levels over past centuries using tree rings. Journal of Cold Regions Engineering, 14(4), 192–212. doi:10.1061/(ASCE)0887-381X(2000)14:4(192) Bailey, H. P. (1947). Trees as climatic indicators. Yearbook of the Association of Pacific Coast Geographers, 9(1), 23–29. Bonin, D. V., & Burn, D. H. (2005). Use of tree ring reconstructed streamflows to assess drought. Canadian Journal of Civil Engineering, 32(6), 1114–1123. Bradley, R. S. (1985). Quaternary paleoclimatology : methods of paleoclimatic reconstruction. Boston: Unwin Hyman. Brito-Castillo, L., Dı́az-Castro, S., Salinas-Zavala, C. A., & Douglas, A. V. (2003). Reconstruction of long-term winter streamflow in the Gulf of California continental watershed. Journal of Hydrology, 278(1), 39–50. doi:https://doi.org/10.1016/S0022-1694(03)00131-8 Buckley, B. M., Anchukaitis, K. J., Penny, D., Fletcher, R., Cook, E. R., Sano, M., . . . Hong, T. M. (2010). Climate as a contributing factor in the demise of Angkor, Cambodia. Proceedings of the National Academy of Sciences, 107(15), 6748–6752. doi:10.1073/pnas.0910827107 Bunn, A. G., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., & Zang, C. (2019). dplR: Dendrochronology Program Library in R. R package version 1.7.0. https://CRAN.R-project.org/package=dplR Camargo, S. J., & Sobel, A. H. (2005). Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18(15), 2996–3006. doi:10.1175/JCLI3457.1 Case, R. A., & MacDonald, G. M. (2007). Tree ring reconstructions of streamflow for three canadian prairie rivers. Journal of the American Water Resources Association, 39(3), 703–716. doi:10.1111/j.1752-1688.2003.tb03686.x Casper, B. B., & Jackson, R. B. (1997). Plant competition underground. Annual Review of Ecology and Systematics, 28(1), 545–570. Chan, J., & Li, C. Y. (2004). The East Asia Winter Monsoon. In C.P Chang (Ed), East Asian Monsoon. World Scientific, 54–106. Chang, C. P., & Lu, M. M. (2012). Intraseasonal predictability of Siberian high and East Asian Winter Monsoon and its interdecadal variability. Journal of Climate, 25(5), 1773–1778. doi:10.1175/JCLI-D-11-00500.1 Chen, W., Feng, J., & Wu, R. (2012). Roles of ENSO and PDO in the link of the East Asian Winter Monsoon to the following summer monsoon. Journal of Climate, 26(2), 622–635. doi:10.1175/JCLI-D-12-00021.1 Cleaveland, M. K. (2000). A 963 year reconstruction of summer (JJA) stream flow in the White River, Arkansas, USA, from tree-rings. The Holocene, 10(1), 33–41. doi:10.1191/095968300666157027 Coble, A., & Kolb, T. (2012). Riparian tree growth response to drought and altered streamflow along the Dolores River, Colorado. Western Journal of Applied Forestry, 27(4), 205–211. Cohen, J., & Barlow, M. (2005). The NAO, the AO, and global warming: How closely related?. Journal of Climate, 18(21), 4498–4513. Cook, E. R. (1985). A time series analysis approach to tree ring standarization (Dendrochronology, Forestry, Dendroclimatology, Autoregressive Process). In: ProQuest Dissertations Publishing. Cook E. R., & Holmes R. L. (1986). User's manual for program ARSTAN. In R.L. Holmes, R.K. Adams, & H.C. Fritts (Eds.), In Tree-ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin (pp 50–56). Arizona, AZ : University of Arizona Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C., & Wright, W. E. (2010). Asian Monsoon failure and megadrought during the last millennium. Science, 328(5977), 486. doi:10.1126/science.1185188 Cook, E. R., Briffa, K. R., & Jones, P. D. (1994). Spatial regression methods in dendroclimatology: A review and comparison of two techniques. International Journal of Climatology, 14(4), 379–402. doi:10.1002/joc.3370140404 Cook, E. R., & Jacoby, G. C. (1977). Tree-ring-drought relationships in the Hudson Valley, New York. Science, 198(4315), 399. doi:10.1126/science.198.4315.399 Cook, E. R., Meko, D. M., Stahle, D. W., & Cleaveland, M. K. (1999). Drought reconstructions for the continental United States. Journal of Climate, 12(4), 1145–1162. doi:10.1175/1520-0442(1999)012<1145:Drftcu>2.0.Co;2 Crawford, C. J., Griffin, D., & Kipfmueller, K. F. (2015). Capturing season-specific precipitation signals in the northern Rocky Mountains, USA, using earlywood and latewood tree rings. Journal of Geophysical Research: Biogeosciences, 120(3), 428–440. doi:10.1002/2014JG002740 Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65. doi:10.1002/wcc.81 Denmead, O. T., & Shaw, R. H. (1962). Availability of soil water to plants as affected by soil moisture content and meteorological conditions 1. Agronomy journal, 54(5), 385–390. DeRose, R. J., Bekker, M. F., Wang, S. Y., Buckley, B. M., Kjelgren, R. K., Bardsley, T., . . . Allen, E. B. (2015). A millennium-length reconstruction of Bear River stream flow, Utah. Journal of Hydrology, 529, 524–534. doi:https://doi.org/10.1016/j.jhydrol.2015.01.014 Diblasi, A., & Bowman, A. (1997). Testing for constant variance in a linear model. Statistics & Probability Letters, 33(1), 95–103. doi:10.1016/S0167-7152(96)00115-0 Ding, Y., Wen, S., & Li, Y. (1991). A study of dynamic structures of the Siberian high in winter. Acta Meteorologica Sinica, 49(4), 430–439. Fritts, H. C. (1976). Tree rings and climate. London, Academic Press. Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. Gallant, A. J. E., & Gergis, J. (2011). An experimental streamflow reconstruction for the River Murray, Australia, 1783–1988. Water Resources Research, 47(12). doi:10.1029/2010WR009832 Gedalof, Z. E., Peterson, D. L., & Mantua, N. J. (2004). Columbia river flow and drought since 1750. Journal of the American Water Resources Association, 40(6), 1579–1592. doi:10.1111/j.1752-1688.2004.tb01607.x George, S. S., & Nielsen, E. (2000). Signatures of high-magnitude 19th-century floods in Quercus macrocarpa tree rings along the Red River, Manitoba, Canada. Geology, 28(10), 899–902. doi:10.1130/0091-7613(2000)28<899:SOHTFI>2.0.CO;2 Graham, N. E. (1994). Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: observations and model results. Climate Dynamics, 10(3), 135–162. doi:10.1007/BF00210626 Guan, B. T. (2014). Ensemble empirical mode decomposition for analyzing phenological responses to warming. Agricultural and forest meteorology, 194, 1–7. Guan, B. T., Wright, W. E., Chung, C. H., & Chang, S. T. (2012). ENSO and PDO strongly influence Taiwan spruce height growth. Forest Ecology and Management, 267, 50–57. doi:10.1016/j.foreco.2011.11.028 Guan, B. T., Wright, W. E., Chiang, L. H., & Cook, E. R. (2018a). A dry season streamflow reconstruction of the critically endangered Formosan landlocked salmon habitat. Dendrochronologia, 52, 152–161. doi:10.1016/j.dendro.2018.10.008 Guan, B. T., Wright, W. E., & Cook, E. R. (2018b). Ensemble empirical mode decomposition as an alternative for tree-ring chronology development. Tree-ring Research, 74(1), 28–38. doi: 10.3959/1536-1098-74.1.28 Guttman, N. B. (1998). Comparing the Palmer Drought index and this standardized percipitaton index. Journal of the American Water Resources Association, 34(1), 113–121. doi:10.1111/j.1752-1688.1998.tb05964.xHardman, G. (1936). The relationship between tree-growths aand stream-runoff in the Truckee River Basin, California-Nevada. Eos, Transactions American Geophysical Union, 17(2), 491–493. doi:10.1029/TR017i002p00491 Hawley, F. M. (1937). Relationship of southern cedar growth to precipitation and run off. Ecology, 18(3), 398–405. He, S., Gao, Y., Li, F., Wang, H., & He, Y. (2017). Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Science Reviews, 164, 48–62. Herweijer, C., Seager, R., Cook, E. R., & Emile-Geay, J. (2007). North American droughts of the last millennium from a gridded network of tree-ring data. Journal of Climate, 20(7), 1353-1376. doi:10.1175/JCLI4042.1 Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-ring bulletin. Hong, H., Zhang, C., Shang, S., Huang, B., Li, Y., Li, X., & Zhang, S. (2009). Interannual variability of summer coastal upwelling in the Taiwan Strait. Continental Shelf Research, 29(2), 479–484. doi:https://doi.org/10.1016/j.csr.2008.11.007 Huang, C. W., & Kao, P. K. (2010). Weakening of the winter monsoon and abrupt increase of winter rainfalls over northern Taiwan and southern China in the early 1980s. Journal of Climate, 23(9), 2357–2367. Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. Huang, N. E., & Wu, Z. (2008). A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46(2). doi:10.1029/2007RG000228 Huang, T. H., Chen, T. A., Zhang, W. Z., & Zhuang, X. F. (2015). Varying intensity of Kuroshio intrusion into Southeast Taiwan Strait during ENSO events. Continental Shelf Research, 103, 79–87. doi:10.1016/j.csr.2015.04.021 Hung, C. W., Hsu, H. H., & Lu, M. M. (2004). Decadal oscillation of spring rain in northern Taiwan. Geophysical Research Letters, 31(22). doi:10.1029/2004GL021344 IPCC. (2012). Summary for policymakers: Managing the risks of extreme events and disasters to advance climate change adaptation. In C. B. Field, V. Barros, T. F. Stocker, Q. Dahe, D. J. Dokken, K. Ebi, M. Mastrandrea, K. J. Mach, G. K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (pp. 1–19). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Jeong, J. H., & Ho, C. H. (2005). Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophysical Research Letters, 32(14). Jones, P. D., Briffa, K. R., & Pilcher, J. R. (1984). Riverflow reconstruction from tree rings in southern Britain. Journal of Climatology, 4(5), 461–472. doi:10.1002/joc.3370040502 Keen, F. P. (1937). Climatic cycles in Eastern Oregon as indicated by tree rings. Monthly Weather Review, 65(5), 175–188. doi:10.1175/1520-0493(1937)65<175:CCIEOA>2.0.CO;2 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., ... & Zhu, Y. (1996). The NCEP/NCAR 40 year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472. Kern, Z., Patkó, M., Kázmér, M., Fekete, J., Kele, S., & Pályi, Z. (2013). Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quaternary International, 293, 257–267. doi:10.1016/j.quaint.2012.05.037 Koprowski, M., Okoński, B., Gričar, J., & Puchałka, R. (2018). Streamflow as an ecological factor influencing radial growth of European ash (Fraxinus excelsior (L.)). Ecological Indicators, 85, 390–399. doi:10.1016/j.ecolind.2017.09.051 Kug, J. S., Jin, F. F., & An, S. I. (2009). Two types of El Niño events: cold tongue El Niño and warm pool El Niño. Journal of Climate, 22(6), 1499–1515. Kuo, N. J., & Ho, C.R. (2004). ENSO effect on the sea surface wind and sea surface temperature in the Taiwan Strait. Geophysical Research Letters, 31(13). doi:10.1029/2004GL020303 Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied Linear Statistical Models 5thed. McGraw Hill Irwin Boston, New York,1396. Lebourgeois, F. (2000). Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. France. Annals of Forest Science, 57(2), 155–164. Lepage, H., & Bégin, Y. (1996). Tree-ring dating of extreme water level events at Lake Bienville, Subarctic Quebec, Canada. Arctic and Alpine Research, 28(1), 77–84. doi:10.1080/00040851.1996.12003150 Li, S., & Bates, G. T. (2007). Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Advances in Atmospheric Sciences, 24(1), 126–135. doi:10.1007/s00376-007-0126-6 Li, X. F., Li, J., & Li, Y. (2015). Recent winter precipitation increase in the middle–lower Yangtze River Valley since the late 1970s: A response to warming in the tropical Indian Ocean. Journal of Climate, 28(9), 3857–3879. Lin, C. C., Liou, Y. J., & Huang, S. J. (2015). Impacts of two-type ENSO on rainfall over Taiwan. Advances in Meteorology, 2015, 7. doi:10.1155/2015/658347 Liu, B., Huang, G., Hu, K., Wu, R., Gong, H., Wang, P., & Zhao, G. (2018). The multidecadal variations of the interannual relationship between the East Asian summer monsoon and ENSO in a coupled model. Climate Dynamics, 51(5), 1671–1686. doi:10.1007/s00382-017-3976-3 Luukko, P. J. J., Helske, J. , & Räsänen, E. (2016). Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Computational Statistics 31: 545–557. doi:10.1007/s00180-015-0603-9. Mantua, N. J., & Hare, S. (2002). Pacific-Decadal Oscillation (PDO). Encyclopedia of Global Environmental Change, 1, 592–594. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon roduction. Bulletin of the American Meteorological Society, 78(6), 1069–1080. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17(22), 179–183. Boston, MA: American Meteorological Society. Meko, D. M., & Baisan, C. H. (2001). Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region. International Journal of Climatology, 21(6), 697–708. doi:10.1002/joc.646 Meko, D. M., Touchan, R., Díaz, J. V., Griffin, D., Woodhouse, C. A., Castro, C. L., . . . Leavitt, S. W. (2013). Sierra San Pedro Mártir, Baja California, cool-season precipitation reconstructed from earlywood width of Abies concolor tree rings. Journal of Geophysical Research: Biogeosciences, 118(4), 1660–1673. doi:10.1002/2013JG002408 Meko, D. M., & Woodhouse, C. A. (2005). Tree-ring footprint of joint hydrologic drought in Sacramento and Upper Colorado River basins, western USA. Journal of Hydrology, 308(1), 196–213. doi:10.1016/j.jhydrol.2004.11.003 Meko, D. M., & Woodhouse, C. A. (2011). Application of streamflow reconstruction to water resources management. In M. K. Hughes, T. W. Swetnam, & H. F. Diaz (Eds.), Dendroclimatology: Progress and Prospects (pp.231–261). Dordrecht: Springer Netherlands. Meko, D. M., Woodhouse, C. A., & Morino, K. (2012). Dendrochronology and links to streamflow. Journal of Hydrology, 412, 200–209. doi:10.1016/j.jhydrol.2010.11.041 Meyers, S.R. (2014). Astrochron: An R Package for Astrochronology. https://cran.r-project.org/package=astrochron Miller, A. J., Cayan, D. R., Barnett, T. P., Graham, N. E., & Oberhuber, J. M. (1994). The 1976–77 climate shift of the Pacific Ocean. Oceanography, 7(1), 21–26. Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1), 202–216. doi:10.1016/j.jhydrol.2010.07.012 Namias, J. (1978). Multiple causes of the North American abnormal winter 1976–77. Monthly Weather Review, 106(3), 279–295. doi:10.1175/1520-0493(1978)106<0279:MCOTNA>2.0.CO;2 Neves, J. (2012). Package ‘spi’. Compute SPI index. Wien: CRAN. Okoński, B., & Koprowski, M. (2016). Are vessel traits of earlywood storing effect of hydroclimatic factors on radial growth of European ash? The case study of a floodplain forest. Forestry Letters, 109(10). Palmer, W. C. (1965). Meteorological drought. Weather Bureau Research Paper 45, U.S. Department of Commerce, Washington, DC. Potts, H. (1962). A 600 year record of drought recurrences. First water resources engineering conference, American Society of Civil Engineers, Omaha, Nebraska. Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33. Sara, C. D. Â., Matthew, D. T., David, W. S., & Malcolm, K. C. (2002). Chihuahua (Mexico) winter-spring precipitation reconstructed from tree-rings, 1647–1992. Climate Research, 22(3), 237–244. Sauchyn, D., Vanstone, J., Jacques, J. M. S., & Sauchyn, R. (2015). Dendrohydrology in Canada’s western interior and applications to water resource management. Journal of Hydrology, 529, 548–558. doi:10.1016/j.jhydrol.2014.11.049 Schulman, E. (1942). Centuries-long tree indices of precipitation in the Southwest (II). Bulletin of the American Meteorological Society, 23(5), 204–217. Schulman, E. (1945). Tree-ring hydrology of the Colorado River basin (Vol. 16). Arizona, AZ: University of Arizona Press. Schulman, E. (1951). Tree-ring indices of rainfall, temperature, and river flow. In H. R. Byers, H. E. Landsberg, H. Wexler, B. Haurwitz, A. F. Spilhaus, H. C. Willett, H. G. Houghton, & T. F. Malone (Eds.), Compendium of Meteorology: Prepared under the Direction of the Committee on the Compendium of Meteorology (pp. 1024–1029). Boston, MA: American Meteorological Society. Schulman, E. (1953). Tree-ring evidence for climatic changes. In H. Shapely (Ed) Climatic Change: Evidence, Causes, and Effects. Edited (pp.209). Cambridge, MA: Harvard University Press. Schulman, E. (1956). Dendroclimatic changes in semiarid America. Arizona, AZ: University of Arizona Press. Schweingruber, F. H. (1983). Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie, 1–234. Serrano, S. M. V., Moreno, J. I. L., Beguería, S., Lacruz, J. L., Molina, C. A., & Tejeda, E. M. (2012). Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering, 17(2), 318–332. doi:10.1061/(ASCE)HE.1943-5584.0000433 Shah, S. K., Bhattacharyya, A., & Chaudhary, V. (2014). Streamflow reconstruction of Eastern Himalaya River, Lachen ‘Chhu’, North Sikkim, based on tree-ring data of Larix griffithiana from Zemu Glacier basin. Dendrochronologia, 32(2), 97–106. doi:10.1016/j.dendro.2014.01.005 Sheu, D. D., Kou, P., Chiu, C. H., & Chen, M. J. (1996). Variability of tree-ring δ13C in Taiwan fir: Growth effect and response to May–October temperatures. Geochimica et Cosmochimica Acta, 60(1), 171–177. doi:https://doi.org/10.1016/0016-7037(95)00401-7 Shinoda, T., Hurlburt, H. E., & Metzger, E. J. (2011). Anomalous tropical ocean circulation associated with La Niña Modoki. Journal of Geophysical Research: Oceans, 116(C12). Speer, J. H. (2010). Fundamentals of Tree-ring Research. Tucson: University of Arizona Press. Steinschneider, S., & Brown, C. (2011). Influences of North Atlantic climate variability on low-flows in the Connecticut River Basin. Journal of Hydrology, 409(1), 212–224. doi:10.1016/j.jhydrol.2011.08.038 Stockton, C. W., & Boggess, W. R. (1981). Tree rings: a proxy data source for hydrologic forecasting. In: R.M. North, L.B. Dworsky, & D.J. Allee (Eds), Symposium proceedings, unified river basin management (pp.609–624). American Water Resources Association Press. Stockton, C. W., & Boggess, W. R. (1983). Tree-ring data: valuable tool for reconstructing annual and seasonal streamflow and determining long-term trends. Transportation Research Record, 922, 10–17. Stockton, C. W., & Fritts, H. C. (1973). Long-term reconstruction of water level changes for Lake Athabasca by analysis of tree rings. Journal of the American Water Resources Association, 9(5), 1006–1027. Stockton, C. W., & Jacoby, G. C. (1976). Long-term surface-water supply and streamflow trends in the Upper Colorado River basin based on tree-ring analyses. Lake Powell Research Project Bulletin 18, National Science Foundation, Arlington, Va. Stokes, M. A., & Smiley, T. L. (1968). An Introduction to Tree-Ring Dating. Arizona, AZ: University of Arizona Press. Thompson, D. W., & Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical research letters, 25(9), 1297–1300. Touchan, R., Funkhouser, G., Hughes, M. K., & Erkan, N. (2005). Standardized precipitation index reconstructed from Turkish tree-ring widths. Climatic Change, 72(3), 339–353. doi:10.1007/s10584-005-5358-9 Trenberth, K. E. (1990). Recent observed interdecadal climate changes in the northern hemisphere. Bulletin of the American Meteorological Society, 71(7), 988–993. doi:10.1175/1520-0477(1990)071<0988:ROICCI>2.0.CO;2 Trenberth, K. E., & Caron, J. M. (2000). The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. Journal of Climate, 13(24), 4358–4365. doi:10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2 Trenberth, K. E., Jones, P., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., . . . Rusticucci, M. (2007). Observations: surface and atmospheric climate change. Chapter 3. Climate change, 235–336. Trouet, V., & Van Oldenborgh, G. J. (2013). KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology. Tree-ring Research, 69, 3–13. doi:10.3959/1536-1098-69.1.3 Urrutia, R. B., Lara, A., Villalba, R., Christie, D. A., Le Quesne, C., & Cuq, A. (2011). Multicentury tree ring reconstruction of annual streamflow for the Maule River watershed in south central Chile. Water Resources Research, 47(6). doi:10.1029/2010WR009562 Veihmeyer, F. J., & Hendrickson, A. H. (1950). Soil moisture in relation to plant growth. Annual Review of Plant Physiology, 1(1), 285–304. Verdon, D. C., & Franks, S. W. (2006). Long-term behaviour of ENSO: Interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophysical Research Letters, 33(6). doi:10.1029/2005GL025052 Walker, G. (1928). World weather. Quarterly Journal of the Royal Meteorological Society, 54(226), 79–87. doi:10.1002/qj.49705422601 Wang, Q., Wu, J., Lei, T., He, B., Wu, Z., Liu, M., . . . Liu, D. (2014). Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International, 349, 10–21. doi:10.1016/j.quaint.2014.06.021 Wang, S. Y., L'Heureux, M., & Chia, H. H. (2012). ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophysical Research Letters, 39(5). doi:10.1029/2012GL050909 Wigley, T. M. L., Briffa, K. R., & Jones, P. D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology, 23(2), 201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 Woodhouse, C. A., Gray, S. T., & Meko, D. M. (2006). Updated streamflow reconstructions for the Upper Colorado River Basin. Water Resources Research, 42(5). doi:10.1029/2005WR004455 Woodhouse, C. A., & Lukas, J. J. (2006). Multi-century tree-ring reconstructions of Colorado streamflow for water resource planning. Climatic Change, 78(2), 293–315. doi:10.1007/s10584-006-9055-0 Wright, W. E., Guan, B. T., Tseng, Y. H., Cook, E. R., Wei, K. Y., & Chang, S. T. (2015). Reconstruction of the springtime East Asian Subtropical Jet and Western Pacific pattern from a millennial-length Taiwanese tree-ring chronology. Climate Dynamics, 44(5), 1645–1659. doi:10.1007/s00382-014-2402-3 Wu, B., & Wang, J. (2002). Winter Arctic oscillation, Siberian high and East Asian winter monsoon. Geophysical research letters, 29(19), 3. Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 1(01), 1–41. Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B. V., & Chen, X. (2011). On the time-varingng trend in global-mean surface temperature. Climate Dynamics, 37(3), 759. doi:10.1007/s00382-011-1128-8 Yang, B., Qin, C., Shi, F., & Sonechkin, D. M. (2011). Tree ring-based annual streamflow reconstruction for the Heihe River in arid northwestern China from ad 575 and its implications for water resource management. The Holocene, 22(7), 773–784. doi:10.1177/0959683611430411 Yuan, Y., Shao, X., Wei, W., Yu, S., Gong, Y., & Trouet, V. (2007). The potential to reconstruct Manasi River streamflow in the northern Tien Shan Mountains (NW China). Tree-Ring Research, 63(2), 81–93. doi:10.3959/1536-1098-63.2.81 Zhang, Y. (1996). An observational study of atmosphere-ocean interactions in the northern oceans on interannual and interdecadal time-scale. Ph.D. dissertation, University of Washington, Seattle, Washington. Zheng, F., Li, J., Li, Y., Zhao, S., & Deng, D. (2016). Influence of the Summer NAO on the Spring-NAO-Based Predictability of the East Asian Summer Monsoon. Journal of Applied Meteorology and Climatology, 55(7), 1459–1476. doi:10.1175/JAMC-D-15-0199.1 Zuo, J., Li, W., Sun, C., Xu, L., & Ren, H. L. (2013). Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Advances in Atmospheric Sciences, 30(4), 1173–1186. doi:10.1007/s00376-012-2125-5 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7474 | - |
dc.description.abstract | 臺灣在水文議題上,多以觀測流量進行評估與研究。然而,短時間的紀錄僅能得知頻率較高的乾濕事件變異,無法瞭解低頻乾濕趨勢變異,因此本研究將針對樹輪與水文的關係進行研究。本研究延伸前人對於七家灣溪流量的研究,於更靠近七家灣溪的樣區取樣,加上更長流量紀錄的基礎下,以臺灣黃杉(Pseudotsuga wilsoniana Hayata)樹輪輪寬重建溪流量(Streamflow, SF)與標準化溪流量指數(Standardized Streamflow Index, SSFI)。本研究以COFECHA軟體檢驗校正定年,篩選出72根樹芯,並以集成經驗模態分解法(Ensemble Empirical Mode Decomposition)分別建立早材、晚材與全輪年表。分析年表與SF及SSFI間的相關性,最後以早材重建1785–2009與1785–2013年前一年九到當年二月的七家灣溪流量(SFSF)與SSFI (SSFISF),和1785–2009年前一年九到當年三月的七家灣溪流量(SFSM)。本研究也將觀測及重建的七家灣SFSF、SFSM及SSFISF,與荷蘭皇家氣象署Climate Explorer氣象資料庫的海平面溫度及海平面氣壓做場域分析。
結果顯示,研究地區臺灣黃杉早材生長受濕季末期(九月)與乾季(十至三月)的土壤水分影響大。重建的七家灣SFSF、SFSM及SSFISF與觀測值及前人重建的七家灣SSFI波動相似,因此,研究結果支持臺灣黃杉早材重建流量因子的可行性。重建七家灣SF有較高的解釋率,但重建SSFI對於判別乾濕事件發生更有優勢。藉由年表頻譜分析加上重建七家灣SSFISF,可觀察到大約每10–20年有乾旱事件。海面溫度場域分析(Field analysis)顯示太平洋十年際振盪及聖嬰–南方振盪現象的跡象;海平面氣壓的場域分析則顯示亞澳季風系統與北極振盪(Arctic Oscillation)對此地區冬季雨量及流量的影響。尤其九到十月雨量及流量除了受颱風影響外,也受北極振盪暖相位直接與間接的影響。 | zh_TW |
dc.description.abstract | Taiwan often uses flow observation data to study and evaluate hydrologic issues. However, the short-term instrumental records could only reflect high frequency variability of dry/wet events. Therefore, to understand possible low frequency variability, this research focused on the relationship between the tree-ring and streamflow. This study reconstructed the past variability of Chichiawan (CCW) streamflow. This study used a set of sampled Pseudotsuga wilsoniana Hayata (Taiwan Douglass-fir, TDF) trees that were closer to the CCW than those used in the previous research. It also used gaged flow data with a longer observation period. This study then reconstructed the CCW streamflow (SF) and its standardized streamflow index (SSFI) based on the tree-ring width variations of TDF. This study used COFECHA to statistically validate the cross-dating, and 72 cores were selected to construct earlywood, latewood, and total ring width chronologies developed using Ensemble Empirical Mode Decomposition. After analyzing the correlations between chronologies and SF/SSFI, this study selected earlywood ring width chronology to reconstruct CCW SF/SSFI from September to February for 1785–2009 and for 1785–2013 (SFSF / SSFISF), and CCW SF from September to March (SFSM) for 1785–2009. After the reconstructions, this study correlated the observed and reconstructed CCW SFSF / SFSM / SSFISF with the sea surface temperature and sea level pressure fileds.
The results showed that TDF earlywood growth in the study area was affected by the soil moisture conditions from the end of wet season (September) and through out the dry season (October to March). The fluctuations of the observed and reconstructed CCW SFSF、SFSM or SSFISF were similar. Also, they were similar to the October to February SSFI reconstruction of a previous study. Thus, the results supported the possibility of using TDF earlywood to reconstruct CCW dry season SF and SSFI. Although the reconstructed SF had a higher explanation power, the reconstructed SSFI was better for determining the occurrences of dry/wet events. The reconstructed SSFISF showed that dry events could happen around every 10 to 20 years. The sea surface temperature field analysis showed traces of the cold phase of the Pacific Decadal Oscillation and El Niño-Southern Oscillation, whereas the sea level pressure field analysis showed that the precipitation and the streamflow in the studied area were affected by the Asian-Australian monsoon system and the Arctic Oscillation. The precipitation and the streamflow in September to October were affected not only by typhoons, but also directly and indirectly by the warm phase of the Arctic Oscillation. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:44:27Z (GMT). No. of bitstreams: 1 ntu-109-R05625012-1.pdf: 5162562 bytes, checksum: 0d220c8dd3a6a1aa308b7700a128a44e (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 目錄 i
圖目錄 iii 表目錄 vi 中文摘要 1 Abstract 2 第一章 前言 4 第二章 文獻回顧 8 2.1 樹輪的形成與變異 8 2.2 樹木年代學原理 9 2.3 樹木氣候學與樹木水文學的演進 13 2.4 遙相關 18 第三章 材料與方法 26 3.1 研究材料與採樣地點 26 3.2 武陵地區氣候與流量資料 30 3.3 樣本採集、處理與定年 33 3.4 集成經驗模態分解法建立輪寬年表 35 3.5 重建七家灣流量指標 40 3.6 遙相關場域分析 43 第四章 結果 44 4.1 臺灣黃杉樹輪寬度年表 44 4.2 臺灣黃杉年表與流量因子間相關性分析 45 4.3 模型建立檢測 49 4.4 七家灣溪流量重建 53 4.5 七家灣溪標準化流量指標重建 64 第五章 討論 73 5.1 流量與標準化流量指標重建比較 73 5.2 濕季末期對早材生長影響 74 5.3 異常流量事件 75 5.4 遙相關對臺灣中部氣候影響 76 5.5 七家灣溪流量因子重建比較 79 第六章 結論 82 參考文獻 84 附錄 102 | |
dc.language.iso | zh-TW | |
dc.title | 以臺灣黃杉早材重建過去200年來七家灣溪溪流量 | zh_TW |
dc.title | A Reconstruction of Chichiawan Stream Streamflow for the Past 200 Years Using Pseudotsuga wilsoniana Earlywood Widt | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 魏國彥,黃婉如 | |
dc.subject.keyword | 樹木水文學,臺灣黃杉,溪流量重建,標準化流量指數,遙相關, | zh_TW |
dc.subject.keyword | Dendrohydrology,Pseudotsuga wilsoniana,Reconstructed streamflow,Standardized streamflow index,Teleconnection, | en |
dc.relation.page | 105 | |
dc.identifier.doi | 10.6342/NTU202000125 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-02-03 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf | 5.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。