Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74738
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊宏志(Hung-Chih Yang)
dc.contributor.authorHuesh-En Chouen
dc.contributor.author周學恩zh_TW
dc.date.accessioned2021-06-17T09:06:45Z-
dc.date.available2021-02-23
dc.date.copyright2021-02-23
dc.date.issued2021
dc.date.submitted2021-02-01
dc.identifier.citationReference
Anderson, K. G., I. M. Stromnes and P. D. Greenberg (2017). 'Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies.' Cancer Cell 31(3): 311-325.
Chen, X. and D. F. Calvisi (2014). 'Hydrodynamic transfection for generation of novel mouse models for liver cancer research.' Am J Pathol 184(4): 912-923.
Dong, M. B., G. Wang, R. D. Chow, L. Ye, L. Zhu, X. Dai, J. J. Park, H. R. Kim, Y. Errami, C. D. Guzman, X. Zhou, K. Y. Chen, P. A. Renauer, Y. Du, J. Shen, S. Z. Lam, J. J. Zhou, D. R. Lannin, R. S. Herbst and S. Chen (2019). 'Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells.' Cell 178(5): 1189-1204 e1123.
Gabrilovich, D. I., S. Ostrand-Rosenberg and V. Bronte (2012). 'Coordinated regulation of myeloid cells by tumours.' Nat Rev Immunol 12(4): 253-268.
LEVITSKY, H. (1998). '< Induction of antigen-specific T cell anergy- An early event in the course of tumor progression.pdf>.' PNAS 95.
Li, K. K. and D. H. Adams (2014). 'Antitumor CD8+ T cells in hepatocellular carcinoma: present but exhausted.' Hepatology 59(4): 1232-1234.
Linde, N., W. Lederle, S. Depner, N. van Rooijen, C. M. Gutschalk and M. M. Mueller (2012). 'Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages.' J Pathol 227(1): 17-28.
Llovet, J. M., R. Montal, D. Sia and R. S. Finn (2018). 'Molecular therapies and precision medicine for hepatocellular carcinoma.' Nat Rev Clin Oncol 15(10): 599-616.
Llovet, J. M., J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. Sherman and G. Gores (2016). 'Hepatocellular carcinoma.' Nat Rev Dis Primers 2: 16018.
Mehnert, J. M., A. M. Monjazeb, J. M. T. Beerthuijzen, D. Collyar, L. Rubinstein and L. N. Harris (2017). 'The Challenge for Development of Valuable Immuno-oncology Biomarkers.' Clin Cancer Res 23(17): 4970-4979.
Pinato, D. J., N. Guerra, P. Fessas, R. Murphy, T. Mineo, F. A. Mauri, S. K. Mukherjee, M. Thursz, C. N. Wong, R. Sharma and L. Rimassa (2020). 'Immune-based therapies for hepatocellular carcinoma.' Oncogene 39(18): 3620-3637.
Roth, T. L., P. J. Li, F. Blaeschke, J. F. Nies, R. Apathy, C. Mowery, R. Yu, M. L. T. Nguyen, Y. Lee, A. Truong, J. Hiatt, D. Wu, D. N. Nguyen, D. Goodman, J. A. Bluestone, C. J. Ye, K. Roybal, E. Shifrut and A. Marson (2020). 'Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies.' Cell 181(3): 728-744 e721.
Santos, N. P. (2017). '<Animal models as a tool in hepatocellular carcinoma research- A Review.pdf>.' Tumor Biology.
Schreibe, R. D. (2011). '<Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion.pdf>.' SCIENCE 331.
Suzuki, H., H. Onishi, J. Wada, A. Yamasaki, H. Tanaka, K. Nakano, T. Morisaki and M. Katano (2010). 'VEGFR2 is selectively expressed by FOXP3high CD4+ Treg.' Eur J Immunol 40(1): 197-203.
Voron, T., O. Colussi, E. Marcheteau, S. Pernot, M. Nizard, A. L. Pointet, S. Latreche, S. Bergaya, N. Benhamouda, C. Tanchot, C. Stockmann, P. Combe, A. Berger, F. Zinzindohoue, H. Yagita, E. Tartour, J. Taieb and M. Terme (2015). 'VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors.' J Exp Med 212(2): 139-148.
Yang, J., J. Yan and B. Liu (2018). 'Targeting VEGF/VEGFR to Modulate Antitumor Immunity.' Front Immunol 9: 978.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74738-
dc.description.abstract肝細胞癌(HCC)為目前最盛行的原發性肝癌,佔其中的80-90%。而病人可以依照巴塞隆納肝癌分級來決定治療方式,目前隨著癌症免疫學的發展,與免疫檢查點抑制劑(ICB)出現,近期在臨床用藥治療上結合標靶治療與免疫檢查點抑制劑的使用有良好的反應。目前Lenvatinib(標靶治療)與Pembrolizumab(免疫檢查點抑制劑)的合併使用已經核准為臨床的一線用藥,ORR可達到44.8%,但仍有接近60%的肝癌病人對於此合併治療反應不佳,而目前對於其中的機制仍然不清楚。因此,為了解決此問題,我們利用尾部靜脈高壓注射技術建立高度定量的原發性肝癌小鼠模型,以研究抗原特異性T細胞與腫瘤微環境(TME)之間的交互作用。此模式透過共同表達致癌基因(NRAS)及小片段的螢光素酶作為高度定量腫瘤生長的標的,另外利用CRISPR剔除腫瘤抑制基因(PTEN-p53 / Cas9)。我們觀察到CD4 +和CD8 + T細胞能進入小腫瘤,但會被大腫瘤排斥。此外,透過送入特異性抗原T細胞能有效清除腫瘤,然而在晚期卻無法控制腫瘤生長。因此,藉由探討腫瘤微環境與腫瘤抗原特異性T細胞的浸潤和功能之相互關係,希望能有效增強肝癌的免疫療法。zh_TW
dc.description.abstractHepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and accounts for 80-90% cases. Along with the development of cancer immunology, targeting several pathways yields exciting positive results when combining with immune checkpoint blockades (ICB). Surprisingly, the combinatory therapy with lenvatinib (multi-kinase inhibitor) pembrolizumab (anti-PD-1) has synergistic effect and achieves the objective response rate as high as 44.8%. Nevertheless, there remain about 60 % HCC patients who do not respond to the treatment. Therefore, understanding the mechanisms of combinatory therapy against HCC remains a crucial issue. To solve this issue, we first developed a highly quantitative spontaneous HCC mouse model through hydrodynamic injection (HDI) to study the interaction between antigen-specific T cells and the tumor immune microenvironment (TIME). The HDI-HCC model was generated through the insertion and overexpression of oncogene (NRAS) tagged by the reporter (HiBiT) with transposase and the knockout of tumor suppressor genes (PTEN-p53/Cas9) by CRISPR. The expression level of HiBiT in mouse serum correlated with the tumor size. We found that cell populations of TIME exhibit different phenotypes along with cancer development. We observed the infiltration of CD4 + and CD8+ T in small tumor but their exclusion from large tumors. In contrast, the Ly6C/G+ myeloid cells (probably myeloid-derived suppressor cells) were present in both small and large hepatic tumors. Furthermore, adoptive transfer of tumor-specific CD8+ T cells effectively suppressed tumor at early stage but fail to do so at a late stage. In conclusion, my study discovers distinct phenotypes of T cell infiltration in tumors between early (small) and advanced (large) HCCs, and their different treatment responses to adoptive T cell therapy. Understanding the mechanisms regulating TIME and the infiltration and function of tumor antigen-specific T cells will be crucial to optimize anti-tumor immunotherapy.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:45Z (GMT). No. of bitstreams: 1
U0001-0102202115201200.pdf: 22488058 bytes, checksum: 1d55b93d3f458a2565f09f321c022219 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents目錄
致謝 3
摘要 4
Abstract 5
目錄 7
圖目錄 9
1.Introduction 10
1.1 Hepatocellular carcinoma 10
1.2 HCC microenvironment 10
1.2.1 Cancer immunoediting 10
1.2.2 Immunosuppressive HCC microenvironment 12
1.2.3 T cell activity in HCC 13
1.3 Clinical treatment for HCC 15
1.3.1 HCC staging classification and management strategy 15
1.3.2 Molecular targeted therapies 16
1.3.3 Immune checkpoint blockade (ICB) 17
1.3.4 Combinatory therapy 18
1.3.5 Immune cell-based therapy 19
1.4 HCC mouse models 21
1.4.1 The overview of current HCC mouse models 21
1.4.2 HDI-based HCC mouse model 22
2. Specific aims 25
3. Materials and Methods 26
3.1 Mice 26
3.2 Hydrodynamic tail vein injection 26
3.3 Adoptive T cell transfer 27
3.4 Treatment strategy 27
3.5 Lymphocyte isolation form liver 28
3.6 In vitro T cell activation 28
3.7 Cell staining and flow cytometry 28
3.8 Primary tumor cell isolation and subcutaneous implantation 29
3.9 Histology 30
3.10 Statistic analysis 30
4. Results 32
4.1 Generation of secretory tumor marker (HiBiT) in HDI-HCC mouse model 32
4.2 HiBiT level showed a highly positive correlation with tumor size 33
4.3 Distinct distribution phenotype of immune cells along with cancer development 34
4.4 Expression of OVAI/II peptide served as tumor specific antigen could activate tumor-specific T cells in cancer cells 34
4.5 The anti-tumor effect of adoptive transfer tumor-specific CD8 T cells along with different cancer stage 36
4.6 The anti-tumor effect of combination therapy 37
5. Discussion 39
5.1 Brief summary 39
5.2 HDI-based HCC mouse model 39
5.3 The equilibrium stage of HiBiT level in HDI-HCC mouse model 40
5.4 The immune cell distribution along with cancer development 40
5.5 Improvement of T cell-based therapy 41
Figure 43
Reference 63
圖目錄
Figure 1. The design and validation of the Hi-NRAS HDI HCC mouse model 45
Figure 2. The positive correlation between tumor size and HiBiT level 48
Figure 3. T cells excluded from large tumor but enriched with myeloid cells 52
Figure 4. Primary tumor cells expressed OVAI/II to induce proliferation of OT-I and OT-II cells 55
Figure 5. Adoptive transferred tumor-specific CD8+ T cells had anti-tumor effect before week 3 post HDI 58
Figure 6. The effects of immune-based therapy in HDI-HCC mouse model 62

dc.language.isozh-TW
dc.title在高度定量的肝癌小鼠模式中藉由解析腫瘤微環境來增進T細胞療法zh_TW
dc.titleDissect the tumor microenvironment to improve adoptive T cell therapy in a newly developed highly quantitative HCC mouse modelen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陶秘華(Mi-Hua Tao),林俊彥(Chun-Yen Lin),曾岱宗(Tai-chung Tseng),陳世淯(Shih-Yu Chen)
dc.subject.keyword高度定量HCC模型,合併治療,腫瘤微環境,腫瘤抗原特異性T細胞,zh_TW
dc.subject.keywordquantitative HCC model,combinatory therapy,TIME,tumor-specific T cells,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202100329
dc.rights.note有償授權
dc.date.accepted2021-02-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
U0001-0102202115201200.pdf
  目前未授權公開取用
21.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved