Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世銘(Suming Chen)
dc.contributor.authorShao-Yuan Zhaoen
dc.contributor.author趙劭元zh_TW
dc.date.accessioned2021-06-17T09:06:35Z-
dc.date.available2026-02-01
dc.date.copyright2021-02-24
dc.date.issued2020
dc.date.submitted2021-02-02
dc.identifier.citation方信雄、陳世銘、蔡錦銘、蔡兆胤、陳毓良。2013。臺灣稻稈集運模式之研究.農業機械學刊 22(2): 35-56.
広瀬貴士、久田浩志、光井輝彰。2013。水田用小型除草ロボット (アイガモロボット) の除草効果。岐阜県中山間農業研究所研究報告。Bulletin of the Gifu Prefectural Research Institute of Agricultural Technology in Hilly and Mountainous Areas(8): 17-21.
吳明芳、李振興、王炳聰、詹慧珊、黃建邦。2011。多人臉影像視覺辨識技術 Journal of Kun Shan University (8):75-95。
周恩權、毛罕平、陳樹人、2011。八爪除草機構的設計與實驗——基於虛擬樣機技術 農機化研究 33(2): 62-64。
胡煉、羅錫文、張智剛、陳雄飛、林潮興。2013。株間除草裝置橫向偏移量識別與作物行跟蹤控制 農業工程學報 29(14): 8-14。
徐家盛。2003。多種尺度遙測影像於農業土地利用分類精確度探討。碩士論文。新竹: 中華大學土木工程學系。
高靜瑤。2008。智慧型物體追蹤監控系統之開發。碩士論文。台中: 中興大學電機工程學系。
張小麗、于國英、柴民傑、李江國。2012。除草機機構設計及除草效果研究 安徽農業科學 40(10): 6322-6324。
張光華。2017。附掛式旱田除草機之研發。花蓮區農業專訊 101: 23-25。
許涵竣。2017。蝴蝶蘭開花品質之光譜預測模式。碩士論文。台北: 國立台灣大學生物產業機電工程學系。
陳世銘、蔡兆胤、劉奕辰、趙劭元、蔡錦銘。2020。智慧型農作物株間除草裝置。經濟部智慧財產局:新型專利第 M605003 號。
黄小龍、劉衛東、張春龍、張妍、李偉。2012。苗間除草機器人苗間除草刀優化。農業機械學報 43(6): 42-46。
黃柏昇、張志航。2016。應用插秧機做為田間工作母機進行附掛農機具之研究。104年度農業工程與自動化計畫成果研討會論文集10-13.
黃泰祥。2004。具備人臉追蹤與辨識功能的一個智慧型數位監視系統。學位論文。中壢: 中原大學電子工程研究所。
趙劭元、陳世銘、蔡兆胤、蔡錦銘、何銘哲。2020。智慧除草之整合研究。出自“2020農機與生機學術研討會論文集”,P1101-1104。嘉義:中華農業機械學會。
劉奕辰。2018。以卷積神經網路分析方法應用於除草系統之研究。碩士論文。台北: 國立台灣大學生物產業機電工程學系。
樊江川。2014。無人機航空攝影測樹技術研究。碩士論文。北京: 北京林業大學。
蕭政弘。邱建中。鍾維榮。2003。台灣蔬菜田除草劑之應用與發展。中華民國雜草學會會刊 24(2): 99-113.
Allan, J. 2012. Topic detection and tracking: event-based information organization. Springer Science Business Media.
Arroyo, J., M. Guijarro, and G. Pajares. 2016. An instance-based learning approach for thresholding in crop images under different outdoor conditions. Computers and Electronics in Agriculture 127: 669-679.
Bakker, T., K. van Asselt, J. Bontsema, J. Müller, and G. van Straten. 2006. An autonomous weeding robot for organic farming. In Field and Service Robotics. Springer.
Baudry, M., and B. Dumont. 2006. Patent renewals as options: improving the mechanism for weeding out lousy patents. Review of Industrial Organization 28(1): 41-62.
Bowyer, K., C. Kranenburg, and S. Dougherty. 2001. Edge detector evaluation using empirical ROC curves. Computer Vision and Image Understanding 84(1): 77-103.
Breitenstein, M. D., F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool. 2009. Robust tracking-by-detection using a detector confidence particle filter. In 2009 IEEE 12th International Conference on Computer Vision. IEEE.
Cao, W., X. Wang, Z. Ming, and J. Gao. 2018. A review on neural networks with random weights. Neurocomputing 275: 278-287.
Chang, C.-L., and K.-M. Lin. 2018. Smart agricultural machine with a computer vision-based weeding and variable-rate irrigation scheme. Robotics 7(3): 38.
Charron, M., T. Beyer, N. N. Bohnen, P. E. Kinahan, M. Dachille, J. Jerin, R. Nutt, C. C. Meltzer, V. Villemagne, and D. W. Townsend. 2000. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clinical nuclear medicine 25(11): 905-910.
Chen, B., S. Tojo, and K. Watanabe. 2003. Machine vision for a micro weeding robot in a paddy field. Biosystems Engineering 85(4):393-404.
Choi, K. H., S. K. Han, S. H. Han, K.-H. Park, K.-S. Kim, and S. Kim. 2015. Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields. Computers and Electronics in Agriculture 113: 266-274.
CiresAn, D., U. Meier, J. Masci, and J. Schmidhuber. 2012. Multi-column deep neural network for traffic sign classification. Neural Networks 32: 333-338.
Cloutier, D., R. Van der Weide, A. Peruzzi, and M. Leblanc. 2007. Mechanical weed management. Non-Chemical Weed Management. Oxfordshire, UK: CAB International: 111-134.
Comaniciu, D., V. Ramesh, and P. Meer. 2003. Kernel-based object tracking. IEEE Transactions on pattern analysis and machine intelligence 25(5): 564-577.
Danalache, F., P. Mata, M. Moldao-Martins, and V. D. Alves. 2015b. Novel mango bars using gellan gum as gelling agent: Rheological and microstructural studies. Lwt-Food Science and Technology 62(1): 576-583.
Danalache, F., S. Beirao-da-Costa, P. Mata, V. D. Alves, and M. Moldao-Martins. 2015a. Texture, microstructure and consumer preference of mango bars jellified with gellan gum. Lwt-Food Science and Technology 62(1): 584-591.
Dedousis, A. 2007. An investigation into the design of precision weeding mechanisms for inter or intra-row weed control. PhD Thesis. England: Dept. of Soil, Cranfield University School of Applied Sciences.
Fogelberg,F. 1999. Night-time soil cultivation and intra-row brush weeding for weed control in carrots (Daucus carota L.). Biological Agriculture Horticulture 17(1): 31-45.
Garcia, C., and M. Delakis. 2004. Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Transactions on pattern analysis and machine intelligence 26(11): 1408-1423.
Hamuda, E., B. Mc Ginley, M. Glavin, and E. Jones. 2017. Automatic crop detection under field conditions using the HSV colour space and morphological operations. Computers and Electronics in Agriculture 133: 97-107.
Haug, S., and J. Ostermann. 2014. A Crop/Weed Field Image Dataset for the Evaluation of Computer Vision Based Precision Agriculture Tasks. In ECCV Workshops (4).
Hwang, T.-L., and J. J. Clark. 1990. On local detection of moving edges. In Pattern Recognition, 1990. Proceedings., 10th International Conference on. IEEE.
Kalal, Z., K. Mikolajczyk, and J. Matas. 2012. Tracking-learning-detection. IEEE transactions on pattern analysis and machine intelligence 34(7): 1409-1422.
Khanal, B. P., and M. Knoche. 2017. Mechanical properties of cuticles and their primary determinants. Journal of Experimental Botany 68(19): 5351-5367.
Kim, C., and J.-N. Hwang. 2002. Fast and automatic video object segmentation and tracking for content-based applications. IEEE transactions on circuits and systems for video technology 12(2): 122-129.
Kuang, H. L., C. R. Liu, L. L. H. Chan, and H. Yan. 2018. Multi-class fruit detection based on image region selection and improved object proposals. Neurocomputing 283: 241-255.
Kurstjens, D. A. G. 2002. Mechanisms of selective mechanical weed control by harrowing.
LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521(7553): 436-444.
Leite, T. S., P. E. D. Augusto, and M. Cristianini. 2015. Processing Frozen Concentrated Orange Juice (FCOJ) by High Pressure Homogenization (HPH) Technology: Changes in the Viscoelastic Properties. Food Engineering Reviews 7(2): 231-240.
Li, K., C. Q. Zou, S. H. Bu, Y. Liang, J. Zhang, and M. L. Gong. 2018. Multi-modal feature fusion for geographic image annotation. Pattern Recognition 73: 1-14.
Linares-Garcia, J. A., E. G. Ramos-Ramirez, and J. A. Salazar-Montoya. 2015. Viscoelastic properties and textural characterisation of high methoxyl pectin of hawthorn (Crataegus pubescens) in a gelling system. International Journal of Food Science and Technology 50(6): 1484-1493.
Liu, I. C., S. Chen, C. Y. Tsai, and Y. H. Chang. 2018. Application of convolution neural network analysis on intra-row weeding system for vegetables. In “Proceedings of the 9th International Symposium on Machinery and Mechatronics for Agricultural and Bio-systems Engineering (ISMAB 2018)”, IE3-5. Jeju, Korea: Jeju KAL Hotel.
Lottes, P., J. Behley, A. Milioto, and C. Stachniss. 2018. Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robotics and Automation Letters 3(4): 2870-2877.
Lu, X. Q., Y. X. Chen, and X. L. Li. 2018. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features. Ieee Transactions on Image Processing 27(1): 106-120.
Meyer, T., and G. Okin. 2015. Evaluation of spectral unmixing techniques using MODIS in a structurally complex savanna environment for retrieval of green vegetation, nonphotosynthetic vegetation, and soil fractional cover. Remote Sensing of Environment 161: 122-130.
Milioto, A., P. Lottes, and C. Stachniss. 2018. Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in cnns. In 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
Ning, F., D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. E. Barbano. 2005. Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing 14(9): 1360-1371.
Parish, S. 1990. A review of non-chemical weed control techniques. Biological Agriculture Horticulture 7(2): 117-137.
Petersen, P., and F. Voigtlaender. 2018. Equivalence of approximation by convolutional neural networks and fully-connected networks. arXiv preprint arXiv:1809.00973.
Redmon, J., and A. Farhadi. 2016. YOLO9000: better, faster, stronger. arXiv preprint arXiv:1612.08242.
Ren, S. Q., K. M. He, R. Girshick, and J. Sun. 2017. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Ieee Transactions on Pattern Analysis and Machine Intelligence 39(6): 1137-1149.
Sladojevic, S., M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic. 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience 2016.
Tajuddin, A. 2017. Development of Equipment for Weeding and Interculture. Agricultural Engineering Today 41(3): 43-47.
Tang, J., D. Wang, Z. Zhang, L. He, J. Xin, and Y. Xu. 2017. Weed identification based on K-means feature learning combined with convolutional neural network. Computers and electronics in agriculture 135: 63-70.
Tao, Y. T., J. Zhou, M. J. Wang, N. Zhang, and Y. M. Meng. 2017. An optimum strategy for robotic tomato grasping based on real-time viscoelastic parameters estimation. International Journal of Advanced Robotic Systems 14(4).
Tompkins, F., W. Hart, R. Freeland, J. Wilkerson, and L. Wilhelm. 1988. Comparison of tractor ground speed measurement techniques. Transactions of the ASAE 31(2): 369-0374.
Tompson, J., R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. 2015. Efficient object localization using convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Turk, M., and A. Pentland. 1991. Eigenfaces for recognition. Journal of cognitive neuroscience 3(1): 71-86.
Veenman, C. L., A. Reiner, and M. G. Honig. 1992. Biotinylated dextran amine as an anterograde tracer for single-and double-labeling studies. J Neurosci Methods 41(3): 239-254.
Vishwanathan, R., P. R. Weckler, J. B. Solie, and M. L. Stone. 2005. Evaluation of ground speed sensing devices under varying ground surface conditions. In 2005 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers.
Weibin, H. X. C. Y. G. 2008. Machine Vision-based Navigation for a Weeding Robot [J]. Transactions of the Chinese Society for Agricultural Machinery 3.
Wojke, N., A. Bewley, and D. Paulus. 2017. Simple online and realtime tracking with a deep association metric. In 2017 IEEE international conference on image processing (ICIP). IEEE.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74727-
dc.description.abstract雜草防治是農業生產相當重要的一環,目前台灣多以除草劑作為雜草控制的手段。然而,除草劑對人體與環境皆有害。因此有機農業在近幾年備受推崇。現行有機農業大部分以人工進行除草,不但費時且人力成本高。本研究開發智慧除草系統,以智慧影像辨識結合機械除草的方法,希望可改善現行除草之方式。
本研究採用甘藍為作物對象,以CNN (Convolutional Neural Network, 卷積神經網路)的人工智慧分析法,對一到四週株齡甘藍苗進行訓練。樣本數共1828張照片(7432株甘藍),校正組為1463張照片(5854株),驗證組為365張照片(1578株甘藍),其建立之甘藍智慧辨識系統,對驗證組甘藍之召回率99.6%、精確率為100%及F1-Score為99.8%;以辨識模型為基礎所建立的影像追蹤模型,對同時期拍攝的三週株齡甘藍72株影像追蹤率為100%。由於曳引機缺少精確的車速偵測設備,且在田間行駛可能會遭遇打滑的問題導致誤差,因此本研究設計以影像追蹤法進行車速量測,並與標準測量值進行比較分析,建立之模式r2為0.9999,標準誤差SEC為0.11 cm/s,可用於本智慧除草系統車速之檢測。
除草機構設計可同時進行溝底、行間及株間除草。在行間及溝底的部分採用可移動高低位置之除草犁;株間除草則整合人工智慧影像辨識之結果,利用比例閥調控油壓馬達的流量,使除草爪旋轉避讓甘藍達到株間除草之目的。因應田間地面高低不平,利用四連桿機構配合導輪,對除草機構於畦面高度進行微幅調整。本系統對甘藍植株除草成功率為96.3%,除草效率為0.096公頃/小時,為人工除草效率8.35倍,人工除草成本為本研究之系統成本3.82倍。除草面積為畦面的總面積的96.56%,研究結果顯示智慧型除草系統可大幅提升除草效率,並可解決農業缺工問題,提高農業生產效率及降低生產成本,並取代化學除草的方法,降低環境污染達到永續農業的目的。
zh_TW
dc.description.abstractWeed control is important for agricultural production, and herbicides are currently used to control weeds in Taiwan's agriculture. However, herbicides are harmful to the health and the environment. Therefore, organic farming has been highly appreciated in recent years. Most of the existing organic farming uses manual weeding, which is not only time consuming but also has high labor cost. In this study, we developed an intelligent weeding system, which is a combination of intelligent image recognition and mechanical weeding method, hoping to improve the current weeding practice.
This research developed an intelligent weeding system combining the Convolutional Neural Network (CNN) image processing with weeding mechanisms. The total of 1828 pictures (total 7432 images of cabbage seedlings ) of 1-4 weeks old cabbages seedling were taken as the training samples, of which 1463 pictures (total 5854 images of cabbage seedlings) were selected as the calibration group, and 365 pictures (total 1578 images of cabbage seedlings) as the validation group. An intelligent identification system for cabbage seedlings was then established, and the has 99.6% recall rate, 100% accuracy rate and 99.8% F1-Score. The coefficient of determination (r2 value) of the vehicle speed measurements by image tracking method in comparison with the standard measurements is 0.9999, and SEC (Standard method of Calibration) is 0.11 cm/s, which can reduce the development of the hardware and achieve a more accurate speed detection.
The weeding mechanism was designed to perform weeding operationd for the bottom of the ditch, inter-row and intra-row weeds.Weeding plows with movable high and low positions were used for inter-row and the ditch-bottom weeding. Intra-row weeding system integrated the intelligent image recognition, used a proportional valve to regulate the flow of the hydraulic motor, so that the weeding claws that advanced with the tractor and rotated to avoid hitting the cabbage seedlings and only conducting the intra-row weeding. The weeding success rate for cabbage seedlings can reach to 96.3%. The weeding efficiency is 0.096 hectares per hour, which is more than 8.35 times the manual weeding efficiency, and the manual weeding cost is more than 3.83 times compare to developed system. Including weeding between plants and between rows of furrows, the weeding area is 96.56%. The research results show that the intelligent weeding system can greatly improve the weeding efficiency, and can solve the problem of labor storage in agriculture, improve agricultural production efficiency and reduce production costs, replace chemical weeding methods, reduce environmental pollution, and achieve the goal of sustainable agriculture.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:35Z (GMT). No. of bitstreams: 1
U0001-0102202115382400.pdf: 8336037 bytes, checksum: 0e352f198452efa10deff9f85c6c3392 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌 謝 ii
摘 要 iii
Abstract iv
目 錄 vi
圖目錄 ix
表目錄 xiii
第一章 前 言 1
1.1 前言 1
1.2 研究目的 3
第二章 文獻探討 4
2.1 甘藍簡介 4
2.2 機械除草 6
2.2.1 株間除草 8
2.2.2 除草設備 10
2.2.3 車速偵測 13
2.3 智慧影像 14
2.3.1 智慧影像之農業應用 14
2.3.2 深度學習 15
2.3.3 影像追蹤 17
2.3.4 基於影像辨識之物件追蹤 18
2.4 農機具成本分析 21
第三章 材料與方法 23
3.1 智慧影像辨識模型建立 25
3.1.1 甘藍影像樣本擷取 25
3.1.2 特徵框選 26
3.1.3 智慧辨識模型建立 26
3.2 控制單元 28
3.2.1 除草系統控制 28
3.2.2 影像追蹤模型建立 30
3.2.3 車速偵測驗證實驗設計 32
3.3 除草系統硬體 36
3.3.1 動力裝置 37
3.3.2 取像系統 39
3.3.3 控制面板 41
3.3.4 除草設備 42
3.3.5 油壓控制系統 49
3.4 田間整合測試 56
3.4.1 實驗場地及樣本 56
3.4.2 甘藍補光辨識追蹤實驗 56
3.4.3 除草系統作動實驗 57
3.4.4 甘藍除草實驗 60
3.4.5 智慧型除草系統之成本分析 61
第四章 結果與討論 63
4.1 影像辨識及追蹤模型建立 63
4.1.1 驗證組辨識結果 63
4.2 影像追蹤及車速驗證實驗 64
4.2.1 影像追蹤結果 64
4.2.2 影像車速偵測結果 66
4.3 除草系統硬體測試結果 72
4.3.1 株間除草爪 72
4.3.2 四連桿機構及行間溝底除草 75
4.3.3 油壓流量計算 76
4.4 田間整合測試 78
4.4.1 補光後影像追蹤結果 79
4.4.2 除草系統作動結果 81
4.4.3 田間實驗影像辨識及追蹤 83
4.4.4 田間除草結果及效率比較 84
4.4.5 智慧型除草系統成本計算 90
第五章 結 論 92
第六章 未來建議 93
參考文獻 94
dc.language.isozh-TW
dc.subject卷積神經網路zh_TW
dc.subject智慧影像辨識zh_TW
dc.subject車速偵測zh_TW
dc.subject株間除草zh_TW
dc.subjectConvolutional Neural Networken
dc.subjectIntelligent Image Recognitionen
dc.subjectSpeed Detectionen
dc.subjectIntra-row Weedingen
dc.title智慧辨識技術應用於甘藍除草整合系統之研究zh_TW
dc.titleIntelligent Identification Technology Applied to Integrated Weeding System for Cabbageen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝禮丞(Li-Cheng Hsieh),吳剛智(Gang-Jhy Wu),吳德輝(Te-Hui Wu),蕭世傑(Shih-Jieh Siao)
dc.subject.keyword卷積神經網路,智慧影像辨識,車速偵測,株間除草,zh_TW
dc.subject.keywordConvolutional Neural Network,Intelligent Image Recognition,Speed Detection,Intra-row Weeding,en
dc.relation.page98
dc.identifier.doi10.6342/NTU202100330
dc.rights.note有償授權
dc.date.accepted2021-02-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-0102202115382400.pdf
  未授權公開取用
8.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved