Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74724
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃斯衍(Ssu-Yen Huang)
dc.contributor.authorHsia-Ling Liangen
dc.contributor.author梁夏菱zh_TW
dc.date.accessioned2021-06-17T09:06:32Z-
dc.date.available2021-01-15
dc.date.copyright2020-01-15
dc.date.issued2019
dc.date.submitted2020-01-02
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74724-
dc.description.abstract由於鉍(Bismuth)和以鉍元素為基礎的拓譜絕緣體可能擁有很大的自旋軌道耦合(spin-orbit coupling)效應,因此在自旋電子學(spintronics)中被廣泛地研究。然而,鉍的自旋流轉換成電子流之效率,在不同文獻中卻有高達三個數量級的差別。在本研究中,我們發現成長薄膜的方法和保護層的有無,都對鉍的品質和介面狀況有很大的影響,進而影響鉍的自旋流轉換成電子流之效率。
我們使用 X-射線繞射儀(XRD)和球面像差修正掃描穿透式電子顯微鏡(Cs-STEM),對鉍/釔鐵石瑠石(Bi/YIG)樣品的結晶度和橫截面進行系統性的研究。其中,鉍薄膜分別由射頻(RF)和直流(DC)兩種不同的磁控濺鍍(magnetron sputtering)方式成長。我們發現不論是由射頻或是直流成長的鉍薄膜,都呈現多晶性,並分別具有不同的結晶傾向:射頻鉍膜為(012)方向,而直流鉍膜是(003)方向。除此之外,用射頻濺鍍的鉍/釔鐵石瑠石樣品,能形成高品質鉍膜,擁有平坦的表面和清晰的介面。因此,在射頻濺鍍的鉍/釔鐵石瑠石系統中,當我們用熱梯度或是微波驅動自旋流,能夠量測到穩定的反自旋霍爾效應(inverse spin Hall effect)訊號。另一方面, 使用直流濺鍍方式製備鉍/釔鐵石瑠石樣品,鉍膜會形成粗糙的表面以及無晶向的介面層,導致量測不到反自旋霍爾訊號。另外,我們發現保護層(二氧化矽)對於鉍的自旋流轉換成電子流之效率是很重要的。 沒有保護層的情況下,鉍膜會漸漸變得無晶向,且在介面形成一層鉍和釔鐵石瑠石混合的無晶向層,使得反自旋霍爾訊號衰減。
總結來說,我們提供嚴謹的證據,證明鉍存在自旋流轉換電子流之效率,此效率與鉍薄膜的品質和介面狀況有顯著關係。
zh_TW
dc.description.abstractBismuth (Bi) and Bi-based topological insulators attract extensive interests in the society of spintronics due to the large spin-orbit coupling. However, the spin-to-charge
conversion efficiency of Bi in different reports have spanned three order differences. In this work, we found that the deposition methods and the protecting layer could strongly influence the quality of Bi layer and the interface, resulting in the modulation of spin-tocharge conversion efficiency.
By using XRD and Cs-STEM, we systematically studied the crystallinity and the cross section of Bi/YIG samples with Bi film grown by RF and DC sputtering. Both RFand DC-sputtered Bi were polycrystalline with crystal preferred orientation of (012) and (003), respectively. In the RF-Bi/YIG samples, the Bi films showed high quality with the
flat surface, and the sharp interface. Therefore, the RF-Bi/YIG systems exhibited large inverse spin Hall effect (ISHE) signal driven by either temperature gradient or microwave.While in the DC-Bi/YIG samples, the Bi films formed rough surface and an amorphous nterfacial layer. As a result, there’s no detectable ISHE signal. Furthermore, we also demonstrated that the capping layer (SiO2) was robust to generate the spin-to-charge conversion in Bi. Without the capping layer, Bi film gradually became disordered and formed a mixed amorphous layer at the interface of Bi and YIG, which significantly reduced the ISHE signal.
Our studies provided the rigorous evidence of spin-to-charge conversion in Bi.The spin-to-charge conversion could strongly dependent on the film quality of Bi and the interface condition.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:32Z (GMT). No. of bitstreams: 1
ntu-108-R05245009-1.pdf: 6747874 bytes, checksum: cb980655b0ec15f18993ce2f76a98d81 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書............................................................................................................... i
致謝.................................................................................................................................. ii
摘要................................................................................................................................. iii
Abstract............................................................................................................................ iv
Contents............................................................................................................................ v
List of figures ................................................................................................................ viii
List of tables ................................................................................................................... xv
Chapter 1 Introduction...................................................................................................... 1
1.1 Experimental background and motivation.............................................................. 1
1.2 Experimental results and conclusion ...................................................................... 3
Reference...................................................................................................................... 6
Chapter 2 Spintronic and Material properties ................................................................ 11
2.1 Electron and Spin ................................................................................................. 11
2.2 Spintronics............................................................................................................ 15
2.3 Spin pumping and Spin Seebeck effect ................................................................ 19
2.3.1 Spin pumping (SP) ........................................................................................ 19
2.3.2 Spin Seebeck effect (SSE)............................................................................. 24
2.3.3 Comparison between spin pumping and SSE................................................ 28
2.4 Spin Hall effect (SHE) and inverse spin Hall effect (ISHE) ................................ 30
2.4.1 Hall effect (HE) ............................................................................................. 30
2.4.2 Spin Hall effect (SHE) and inverse Hall effect (ISHE)................................. 32
2.5 Characteristic of YIG and Bismuth ...................................................................... 36
2.5.1 Caracteristic of YIG....................................................................................... 36
2.5.2 Crystal structure effect................................................................................... 39
2.5.3 Characteristic of Bismuth .............................................................................. 41
Reference.................................................................................................................... 50
Chapter 3 Fabrication and analysis method.................................................................... 62
3.1 Material fabrication method ................................................................................. 62
3.1.1 Magnetron sputtering method........................................................................ 62
3.1.2 Photolithography ........................................................................................... 64
3.1.3 Annealing ...................................................................................................... 66
3.2 Sample preparation procedure.............................................................................. 69
3.3 Instruments ........................................................................................................... 73
3.3.1 X-ray diffraction (XRD)................................................................................ 73
3.3.2 X-ray reflectivity (XRR) ............................................................................... 75
3.3.3 Atomic-force microscopy (AFM).................................................................. 76
3.3.4 High-resolution Transmission electron microscope (HRTEM) and Spherical
Aberration Corrector-Scanning transmission electron microscopy (Cs-STEM) [18]
................................................................................................................................ 77
3.3.5 Energy Dispersive Spectrometer (EDS) and Electron energy loss spectroscopy
(EELS).................................................................................................................... 81
3.3.6. Vibrating sample magnetometer (VSM) ...................................................... 82
Reference.................................................................................................................... 84
Chapter 4 Experimental Results and Discussion............................................................ 88
4.1 Properties of DC- and RF-sputtered Bi thin films................................................ 89
4.1.1 Previous studies on Bi with various deposition methods .............................. 89
4.1.2 Properties of DC-or RF- sputtered Bi on Si substrate ................................... 89
4.2 Spin-to-charge conversion in Bi/YIG system affected by Bi quality and interfacial
property....................................................................................................................... 97
4.3 Spin-to-charge conversion in Bi/YIG system by LSSE ..................................... 110
4.4 Importance of capping layer for Bi..................................................................... 114
4.5 Spin Hall angle (θSH) and spin diffusion length ( λsf) of semimetal Bi............ 119
4.6 Spin-to-charge conversion in Bi/YIG/Si(GGG) by spin pumping ..................... 124
4.7 Temperature dependence of LSSE measurement in Semimetal Bi and Normal
Metal Pt .................................................................................................................... 128
Reference.................................................................................................................. 133
Chapter 5 Conclusion ................................................................................................... 137
Reference.................................................................................................................. 139
dc.language.isoen
dc.subject自旋軌道耦合zh_TW
dc.subject球面像差修正掃描穿透式電子顯微鏡zh_TW
dc.subject磁控濺鍍zh_TW
dc.subject自旋電子學zh_TW
dc.subject反自旋霍爾效應zh_TW
dc.subject鉍zh_TW
dc.subject釔鐵石?石zh_TW
dc.subjectCs-STEMen
dc.subjectmagnetron sputteringen
dc.subjectBismuthen
dc.subjectYttrium Iron Garneten
dc.subjectspintronicsen
dc.subjectspin-orbit couplingen
dc.subjectinverse spin Hall effecten
dc.title利用半金屬鉍將自旋電流轉換成電荷電流之研究zh_TW
dc.titleEvidence of spin-to-charge conversion in semimetal
Bismuth
en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林昭吟(Jau-Yn Lin),朱明文(Ming-Wen Chu)
dc.subject.keyword自旋電子學,鉍,釔鐵石?石,自旋軌道耦合,反自旋霍爾效應,磁控濺鍍,球面像差修正掃描穿透式電子顯微鏡,zh_TW
dc.subject.keywordspintronics,Bismuth,Yttrium Iron Garnet,spin-orbit coupling,inverse spin Hall effect,magnetron sputtering,Cs-STEM,en
dc.relation.page139
dc.identifier.doi10.6342/NTU201904452
dc.rights.note有償授權
dc.date.accepted2020-01-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved