請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7471完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江運金(Yun-Jin Jiang) | |
| dc.contributor.author | Wen-Jie Chen | en |
| dc.contributor.author | 陳文傑 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:44:23Z | - |
| dc.date.available | 2023-08-24 | |
| dc.date.available | 2021-05-19T17:44:23Z | - |
| dc.date.copyright | 2018-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | Al-Imari, L., Gerlai, R., 2008. Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behavioural Brain Research 189, 216–219.
Amsterdam, A., Nissen, R.M., Sun, Z., Swindell, E.C., Farrington, S., Hopkins, N., 2004. Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci U S A 101, 12792-12797. Babin, P.J., Goizet, C., Raldúa, D., 2014. Zebrafish models of human motor neuron diseases: Advantages and limitations. Progress in Neurobiology 118, 36–58. Basi, G.S., Hemphill, S., Brigham, E.F., Liao, A., Aubele, D.L., Baker, J., Barbour, R., Bova, M., Chen, X.-H., Dappen, M.S., et al., 2010. Amyloid precursor protein selective gamma-secretase inhibitors for treatment of Alzheimer’s disease. Alzheimer’s Research & Therapy 2, 36. Bass, S.L.S., Gerlai, R., 2008. Zebrafish (Danio rerio) responds differentially to stimulus fish: The effects of sympatric and allopatric predators and harmless fish. Behavioural Brain Research 186, 107–117. Bhattarai, P., Thomas, A.K., Cosacak, M.I., Papadimitriou, C., Mashkaryan, V., Froc, C., Reinhardt, S., Kurth, T., Dahl, A., Zhang, Y., Kizil, C., 2016. IL4/STAT6 Signaling Activates Neural Stem Cell Proliferation and Neurogenesis upon Amyloid-β42 Aggregation in Adult Zebrafish Brain. Cell Reports 17, 941–948. Bill, B.R., Petzold, A.M., Clark, K.J., Schimmenti, L.A., Ekker, S.C., 2009. A Primer for Morpholino Use in Zebrafish. Zebrafish 6, 69–77. Bolduc, D.M., Montagna, D.R., Gu, Y., Selkoe, D.J., Wolfe, M.S., 2016. Nicastrin functions to sterically hinder γ-secretase–substrate interactions driven by substrate transmembrane domain. PNAS 113, E509–E518. Carroll, C.M., Li, Y.-M., 2016. Physiological and pathological roles of the γ-secretase complex. Brain Res Bull 126, 199–206. Campbell, W.A., Yang, H., Zetterberg, H., Baulac, S., Sears, J.A., Liu, T., Wong, S.T.C., Zhong, T.P., Xia, W., 2006. Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. Journal of Neurochemistry 96, 1423–1440. De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J.S., Schroeter, E.H., Schrijvers, V., Wolfe, M.S., Ray, W.J., Goate, A., Kopan, R., 1999. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522. De Strooper, B., Iwatsubo, T., Wolfe, M.S., 2012. Presenilins and γ-Secretase: Structure, Function, and Role in Alzheimer Disease. Cold Spring Harb Perspect Med 2, a006304. De Strooper, B., Karran, E., 2016. The Cellular Phase of Alzheimer’s Disease. Cell 164, 603–615. Doyle, J.M., Merovitch, N., Wyeth, R.C., Stoyek, M.R., Schmidt, M., Wilfart, F., Fine, A., Croll, R.P., 2017. A simple automated system for appetitive conditioning of zebrafish in their home tanks. Behavioural Brain Research 317, 444–452. Dries, D.R., Zhu, Y., Brooks, M.M., Forero, D.A., Adachi, M., Cenik, B., West, J.M., Han, Y.-H., Yu, C., Arbella, J., Nordin, A., Adolfsson, R., Del-Favero, J., Lu, Q.R., Callaerts, P., Birnbaum, S.G., Yu, G., 2016. Loss of Nicastrin from Oligodendrocytes Results in Hypomyelination and Schizophrenia with Compulsive Behavior. J Biol Chem 291, 11647–11656. Duggan, S.P., McCarthy, J.V., 2016. Beyond γ-secretase activity: The multifunctional nature of presenilins in cell signalling pathways. Cellular Signalling 28, 1–11. Dunys, J., Kawarai, T., Sevalle, J., Dolcini, V., George-Hyslop, P.S., Costa, C.A.D., Checler, F., 2007. p53-dependent Aph-1 and Pen-2 Anti-apoptotic Phenotype Requires the Integrity of the γ-Secretase Complex but Is Independent of Its Activity. J. Biol. Chem. 282, 10516–10525. El-Brolosy, M.A., Stainier, D.Y.R., 2017. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet 13. Emran, F., Rihel, J., Dowling, J.E., 2008. A Behavioral Assay to Measure Responsiveness of Zebrafish to Changes in Light Intensities. JoVE (Journal of Visualized Experiments) e923–e923. Esler, W.P., Kimberly, W.T., Ostaszewski, B.L., Diehl, T.S., Moore, C.L., Tsai, J.-Y., Rahmati, T., Xia, W., Selkoe, D.J., Wolfe, M.S., 2000. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nature Cell Biology 2, 428–434. Gabery, S., Murphy, K., Schultz, K., Loy, C.T., McCusker, E., Kirik, D., Halliday, G., Petersén, A., 2010. Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses. Acta Neuropathol. 120, 777–788. Gerlai, R., 2016. Chapter 17 - Learning and memory in zebrafish (Danio rerio), in: Detrich, H.W., Westerfield, M., Zon, L.I. (Eds.), Methods in Cell Biology, The Zebrafish. Academic Press, pp. 551–586. Gerlai, R., Fernandes, Y., Pereira, T., 2009. Zebrafish (Danio rerio) responds to the animated image of a predator: Towards the development of an automated aversive task. Behavioural Brain Research 201, 318–324. Glenner, G.G., Wong, C.W., 1984. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications 120, 885–890. Golde, T.E., Koo, E.H., Felsenstein, K.M., Osborne, B.A., Miele, L., 2013. γ-Secretase Inhibitors and Modulators. Biochim Biophys Acta 1828. Goutte, C., Tsunozaki, M., Hale, V.A., Priess, J.R., 2002. APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. PNAS 99, 775–779. Guillozet, A.L., Weintraub, S., Mash, D.C., Mesulam, M.M., 2003. Neurofibrillary Tangles, Amyloid, and Memory in Aging and Mild Cognitive Impairment. Arch Neurol 60, 729–736. Haass, C., Selkoe, D.J., 1993. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 75, 1039–1042. Hardy, J.A., Higgins, G.A., 1992. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185. Hardy, J., Selkoe, D.J., 2002. The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science 297, 353–356. Hasegawa, H., Sanjo, N., Chen, F., Gu, Y.-J., Shier, C., Petit, A., Kawarai, T., Katayama, T., Schmidt, S.D., Mathews, P.M., Schmitt-Ulms, G., Fraser, P.E., George-Hyslop, P.S., 2004. Both the Sequence and Length of the C Terminus of PEN-2 Are Critical for Intermolecular Interactions and Function of Presenilin Complexes. Journal of Biological Chemistry 279, 46455–46463. Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., Schmid, B., 2013. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140, 4982–4987. Hsu, C.-H., 2018. Study the roles of two Notch related genes, mind bomb and nicastrin, in zebrafish early development. PhD thesis, National Hsing Hua University, Hsinchu, Taiwan. Kaneko, Y., Pappas, C., Tajiri, N., Borlongan, C.V., 2016. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro. Sci Rep 6. Kang, J., Shin, S., Perrimon, N., Shen, J., 2017. An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging Drosophila Brain. Genetics 206, 1479–1493. Karelina, K., Stuller, K.A., Jarrett, B., Zhang, N., Wells, J., Norman, G.J., DeVries, A.C., 2011. Oxytocin mediates social neuroprotection after cerebral ischemia. Stroke 42, 3606–3611. Kimberly, W.T., LaVoie, M.J., Ostaszewski, B.L., Ye, W., Wolfe, M.S., Selkoe, D.J., 2003. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. PNAS 100, 6382–6387. Kok, F.O., Shin, M., Ni, C.-W., Gupta, A., Grosse, A.S., van Impel, A., Kirchmaier, B.C., Peterson-Maduro, J., Kourkoulis, G., Male, I., DeSantis, D.F., Sheppard-Tindell, S., Ebarasi, L., Betsholtz, C., Schulte-Merker, S., Wolfe, S.A., Lawson, N.D., 2015. Reverse genetic screening reveals poor correlation between Morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32, 97–108. Kokel, D., Dunn, T.W., Ahrens, M.B., Alshut, R., Cheung, C.Y.J., Saint-Amant, L., Bruni, G., Mateus, R., Ham, T.J. van, Shiraki, T., Fukada, Y., Kojima, D., Yeh, J.-R.J., Mikut, R., Lintig, J. von, Engert, F., Peterson, R.T., 2013. Identification of Nonvisual Photomotor Response Cells in the Vertebrate Hindbrain. J. Neurosci. 33, 3834–3843. Kumar, A., Singh, A., Ekavali, 2015. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacological Reports 67, 195–203. Lal, P., Tanabe, H., Suster, M.L., Ailani, D., Kotani, Y., Muto, A., Itoh, M., Iwasaki, M., Wada, H., Yaksi, E., Kawakami, K., 2018. Identification of a neuronal population in the telencephalon essential for fear conditioning in zebrafish. BMC Biol 16, 45. Law, S.H.W., Sargent, T.D., 2014. The Serine-Threonine Protein Kinase PAK4 Is Dispensable in Zebrafish: Identification of a Morpholino-Generated Pseudophenotype. PLOS ONE 9, e100268. Lee, S.-F., Shah, S., Yu, C., Wigley, W.C., Li, H., Lim, M., Pedersen, K., Han, W., Thomas, P., Lundkvist, J., Hao, Y.-H., Yu, G., 2004. A Conserved GXXXG Motif in APH-1 Is Critical for Assembly and Activity of the γ-Secretase Complex. J. Biol. Chem. 279, 4144–4152. Lee, S.H., Sharma, M., Südhof, T.C., Shen, J., 2014. Synaptic function of nicastrin in hippocampal neurons. PNAS 111, 8973–8978. Li, J., Fici, G.J., Mao, C.-A., Myers, R.L., Shuang, R., Donoho, G.P., Pauley, A.M., Himes, C.S., Qin, W., Kola, I., Merchant, K.M., Nye, J.S., 2003. Positive and Negative Regulation of the γ-Secretase Activity by Nicastrin in a Murine Model. J. Biol. Chem. 278, 33445–33449. Lim, A., Moussavi Nik, S.H., Ebrahimie, E., Lardelli, M., 2015. Analysis of nicastrin gene phylogeny and expression in zebrafish. Dev. Genes Evol. 225, 171–178. Manuel, R., Zethof, J., Flik, G., Bos, R. van den, 2015. Providing a food reward reduces inhibitory avoidance learning in zebrafish. Behavioural Processes 120, 69–72. Martín-Jiménez, R., Campanella, M., Russell, C., 2015. New Zebrafish Models of Neurodegeneration. Curr Neurol Neurosci Rep 15, 33. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., Beyreuther, K., 1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. PNAS 82, 4245–4249. McBride, S.M.J., Choi, C.H., Schoenfeld, B.P., Bell, A.J., Liebelt, D.A., Ferreiro, D., Choi, R.J., Hinchey, P., Kollaros, M., Terlizzi, A.M., Ferrick, N.J., Koenigsberg, E., Rudominer, R.L., Sumida, A., Chiorean, S., Siwicki, K.K., Nguyen, H.T., Fortini, M.E., McDonald, T.V., Jongens, T.A., 2010. Pharmacological and genetic reversal of age dependent cognitive deficits due to decreased presenilin function. J Neurosci 30, 9510–9522. Mitani, Y., Yarimizu, J., Saita, K., Uchino, H., Akashiba, H., Shitaka, Y., Ni, K., Matsuoka, N., 2012. Differential Effects between γ-Secretase Inhibitors and Modulators on Cognitive Function in Amyloid Precursor Protein-Transgenic and Nontransgenic Mice. J. Neurosci. 32, 2037–2050. Newman, M., Ebrahimie, E., Lardelli, M., 2014. Using the zebrafish model for Alzheimer’s disease research. Front Genet 5. Ochalek, A., Mihalik, B., Avci, H.X., Chandrasekaran, A., Téglási, A., Bock, I., Giudice, M.L., Táncos, Z., Molnár, K., László, L., Nielsen, J.E., Holst, B., Freude, K., Hyttel, P., Kobolák, J., Dinnyés, A., 2017. Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimer’s Research & Therapy 9. Osmundson, T.W., Eyre, C.A., Hayden, K.M., Dhillon, J., Garbelotto, M.M., 2013. Back to basics: an evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples. Molecular Ecology Resources 13, 66–74. Paquet, D., Bhat, R., Sydow, A., Mandelkow, E.-M., Berg, S., Hellberg, S., Fälting, J., Distel, M., Köster, R.W., Schmid, B., Haass, C., 2009. A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest 119, 1382–1395. Pardossi‐Piquard, R., Dunys, J., Giaime, E., Guillot‐Sestier, M.-V., George‐Hyslop, P.S., Checler, F., Costa, C.A. da, 2009. p53-Dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent γ-secretase complex. Journal of Neurochemistry 109, 225–237. Plant, L.D., Boyle, J.P., Smith, I.F., Peers, C., Pearson, H.A., 2003. The Production of Amyloid β Peptide Is a Critical Requirement for the Viability of Central Neurons. J. Neurosci. 23, 5531–5535. Prince, M.J., 2016. World Alzheimer Report 2016 - Improving healthcare for people living with dementia: Coverage, quality and costs now and in the future. Schmid, B., Haass, C., 2013. Genomic editing opens new avenues for zebrafish as a model for neurodegeneration. Journal of Neurochemistry 127, 461–470. Sesele Katia, Thanopoulou Kalliopi, Paouri Evi, Tsefou Eliona, Klinakis Apostolos, Georgopoulos Spiros, 2013. Conditional inactivation of nicastrin restricts amyloid deposition in an Alzheimer’s disease mouse model. Aging Cell 12, 1032–1040. Shih, I.-M., Wang, T.-L., 2007. Notch Signaling, γ-Secretase Inhibitors, and Cancer Therapy. Cancer Res 67, 1879–1882. Steiner, H., Winkler, E., Edbauer, D., Prokop, S., Basset, G., Yamasaki, A., Kostka, M., Haass, C., 2002. PEN-2 Is an Integral Component of the γ-Secretase Complex Required for Coordinated Expression of Presenilin and Nicastrin. J. Biol. Chem. 277, 39062–39065. Tabuchi, K., Chen, G., Südhof, T.C., Shen, J., 2009. Conditional Forebrain Inactivation of Nicastrin Causes Progressive Memory Impairment and Age-Related Neurodegeneration. J. Neurosci. 29, 7290–7301. Thinakaran, G., Parent, A.T., 2004. Identification of the role of presenilins beyond Alzheimer’s disease. Pharmacological Research, Alzheimer disease 50, 411–418. Tanyeri, G., Celik, O., Erbas, O., Oltulu, F., Yilmaz Dilsiz, O., 2015. The effectiveness of different neuroprotective agents in facial nerve injury: An experimental study. Laryngoscope 125, E356-364. Urban, S., 2016. Nicastrin guards Alzheimer’s gate. PNAS 113, 1112–1114. Vetrivel, K.S., Zhang, Y., Xu, H., Thinakaran, G., 2006. Pathological and physiological functions of presenilins. Molecular Neurodegeneration 1, 4. Wahl, A.-S., Buchthal, B., Rode, F., Bomholt, S.F., Freitag, H.E., Hardingham, G.E., Rønn, L.C.B., Bading, H., 2009. Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-d-aspartate receptors. Neuroscience, Protein trafficking, targeting, and interaction at the glutamate synapse 158, 344–352. Wang, Y., Mandelkow, E., 2016. Tau in physiology and pathology. Nature Reviews Neuroscience 17, 22–35. Wolfe, M.S., Xia, W., Ostaszewski, B.L., Diehl, T.S., Kimberly, W.T., Selkoe, D.J., 1999. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517. Xi, Y., Noble, S., Ekker, M., 2011. Modeling Neurodegeneration in Zebrafish. Curr Neurol Neurosci Rep 11, 274–282. Xie, T., Yan, C., Zhou, R., Zhao, Y., Sun, L., Yang, G., Lu, P., Ma, D., Shi, Y., 2014. Crystal structure of the γ-secretase component nicastrin. PNAS 111, 13349–13354. Xu, X., Scott-Scheiern, T., Kempker, L., Simons, K., 2007. Active avoidance conditioning in zebrafish (Danio rerio). Neurobiology of Learning and Memory 87, 72–77. Zhang, Y., Luo, W., Wang, H., Lin, P., Vetrivel, K.S., Liao, F., Li, F., Wong, P.C., Farquhar, M.G., Thinakaran, G., Xu, H., 2005. Nicastrin Is Critical for Stability and Trafficking but Not Association of Other Presenilin/γ-Secretase Components. J. Biol. Chem. 280, 17020–17026. Zhang, X., Li, Y., Xu, H., Zhang, Y., 2014. The γ-secretase complex: from structure to function. Front Cell Neurosci 8. Zhang, S.-J., Steijaert, M.N., Lau, D., Schütz, G., Delucinge-Vivier, C., Descombes, P., Bading, H., 2007. Decoding NMDA Receptor Signaling: Identification of Genomic Programs Specifying Neuronal Survival and Death. Neuron 53, 549–562. Zhao, G., Liu, Z., Ilagan, M.X.G., Kopan, R., 2010. γ-Secretase Composed of PS1/Pen2/Aph1a Can Cleave Notch and Amyloid Precursor Protein in the Absence of Nicastrin. J. Neurosci. 30, 1648–1656. Zhao, Y., Li, X., Huang, T., Jiang, L.-L., Tan, Z., Zhang, M., Cheng, I.H.-J., Wang, X., Bu, G., Zhang, Y.-W., Wang, Q., Xu, H., 2017. Intracellular trafficking of TREM2 is regulated by presenilin 1. Exp. Mol. Med. 49, e405. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7471 | - |
| dc.description.abstract | 目前已知伽馬分泌酶 (γ-secretase)在神經退化疾病中扮演重要角色,而Nicastrin是伽馬分泌酶其中一個次單元,其功能為調控伽馬分泌酶與受質的結合。先前研究報導指出在老鼠神經細胞條件式敲除nicastrin基因會導致神經退化,然而其機制尚不清楚。我們實驗室先前也在一個異型合子nicastrin基因突變(nicastrinhi1384/+) 斑馬魚中發現神經退化的症狀,包括高度磷酸化Tau蛋白增加以及認知能力下降。因此我們希望全盤檢測分析此種斑馬魚的神經退化症狀,並評估其是否能成為神經退化研究的模式生物。我們使用斑馬魚行為軌跡追蹤系統探討nicastrinhi1384/+斑馬魚幼魚行為,發現其在光照刺激期間相較同齡野生種 (wild type) 斑馬魚幼魚有更高的活動力。另一方面,使用T型迷宮行為試驗檢測此nicastrinhi1384/+斑馬魚成魚的認知能力,在排除運動能力差異的影響後,初步結果顯示年齡為12個月及18個月的nicastrinhi1384/+斑馬魚,其認知能力明顯變得比同齡野生種 (wild type) 斑馬魚還要低。然而由於先前在行為實驗中使用的食物被用盡且無法再取得,我們更換了行為實驗中的食物,後續的實驗無法完全重複上述行為實驗結果,但18個月的nicastrinhi1384/+斑馬魚認知能力依然有較差的趨勢。此外,使用基因微陣列分析T型迷宮行為試驗受試班馬魚腦中的轉錄組 (transcriptome),結果顯示在nicastrinhi1384/+斑馬魚腦中nicastrin訊息RNA的表現量下降,而其餘伽馬分泌酶次單元的訊息RNA表現量並不受影響。上述結果皆在即時聚合酶鏈鎖反應 (quantitative real-time PCR, qPCR) 實驗中得到證實。最後,運用轉錄組功能分析基因微陣列的數據,結果預測在轉錄層級上年長的nicastrinhi1384/+斑馬魚腦中,神經退化症狀受到促進,另一方面,神經存活、神經分化及神經功能的維持受到抑制,說明年長的nicastrinhi1384/+斑馬魚的腦在轉錄的層級上有神經退化的現象。然而使用末端脫氧核苷酸轉移酶脫氧尿苷三磷酸切口末端標記 (Terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL) 檢測腦中細胞凋亡情形,結果顯示18個月的nicastrinhi1384/+與同齡野生種組別並無差異,未來有必要使用其他神經退化的生物標誌來檢測nicastrinhi1384/+斑馬魚的腦中是否出現神經退化的症狀。
總結來說,nicastrinhi1384/+斑馬魚幼魚在光照環境下相較於野生種斑馬魚幼魚有較高的活動力,表示nicastrinhi1384/+斑馬魚與野生種斑馬魚在神經迴路發育過程中可能有些差異。另一方面,我們證實了在nicastrinhi1384/+斑馬魚腦中,nicastrin訊息RNA表現量下降。再者,行為實驗及轉錄組分析結果皆顯示年長nicastrinhi1384/+斑馬魚有神經退化的趨勢。上述結果顯示 nicastrinhi1384/+斑馬魚具有做為神經退化動物模型的潛力。未來我們需要在年長的nicastrinhi1384/+斑馬魚的腦中檢視其他神經退化症狀,例如神經發炎反應、神經細胞數量減少、神經萎縮及突觸減少等等。 | zh_TW |
| dc.description.abstract | Nicastrin is a subunit of γ-secretase which functions to regulate binding of substrates to γ-secretase and has been implicated in neurodegeneration. However, the mechanism is unclear. Previously, we discovered several neurodegenerative phenotypes, including increased hyperphosphorylated Tau proteins and cognition deficits in aged nicastrinhi1384/+ zebrafish (unpublished data). Accordingly, we intended to comprehensively examine if nicastrinhi1384/+ zebrafish can be a vertebrate model to study neurodegeneration. In the present work, we conducted a visual motor response test on nicastrinhi1384/+ zebrafish larva and uncovered that they were more active under light stimulus than wild type zebrafish larva. Besides, original T-maze behavioral tests on nicastrinhi1384/+ zebrafish demonstrated that memory of 12 and 18 month nicastrinhi1384/+ zebrafish were impaired compared to wild type zebrafish at the same age after excluding the influence of mobility variation. However, as the food which had been used in the previous behavioral tests was run out and unavailable, we switched to a new kind of food and failed to recapitulate the original behavioral tests results in the latter behavioral tests. Nevertheless, memory of nicastrinhi1384/+ zebrafish was still worse than wild type at 18 month of age. On the other hand, transcriptomic analysis on the brains of subject zebrafish of behavioral tests by using microarray showed that nicastrin mRNA level was downregulated in nicastrinhi1384/+ zebrafish, whereas mRNA expression of other γ-secretase subunits was not affected, which were verified by qPCR experiments. Last but not least, disease and functional analysis showed neurodegeneration associated phenotypes were activated, while neuronal survival and functions associated phenotypes were inhibited, implicating that nicastrinhi1384/+ zebrafish have age-dependent neurodegeneration at transcriptional level. However, TUNEL staining displayed no extensive neuronal apoptosis in the telecephalon of 18 month nicastrinhi1384/+ zebrafish.
In conclusion, nicastrinhi1384/+ zebrafish larva displayed higher activity than wild type under light stimulus, and the mechanism needs to be further clarified. On the other hand, we verified the expression of nicastrin was reduced in the brains of adult nicastrinhi1384/+ zebrafish by both microarray and qPCR. Furthermore, both behavioral and transcriptomic analysis demonstrated the trend of age-dependent neurodegeneration in nicastrinhi1384/+ zebrafish, suggesting that nicastrinhi1384/+ zebrafish have potential to be a neurodegeneration model. In the future, we should examine other neurodegeneration phenotypes, such as neuroinflammation, neuronal loss, neuritic dystrophy, and synaptic loss in the brains of aged nicastrinhi1384/+ zebrafish. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:44:23Z (GMT). No. of bitstreams: 1 ntu-107-R05B43021-1.pdf: 3349633 bytes, checksum: 5bd0fc7a3b96c4d2689f3d5462fc92cc (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv Table of Contents vi Index of Figures vii Index of Tables vii Index of Supplementary Figures vii Chapter 1. Introductions 1 1.1 Introduction to Alzheimer’s Disease 1 1.2 Introduction to γ-secretase and Its Subunits 2 1.3 Nicastrin and Neurodegeneration 5 1.4 Zebrafish as A Model to Study Neurodegeneration 6 1.5 nicastrinhi1384 7 1.6 Specific Aim 8 Chapter 2. Materials and Methods 9 2.1 Maintenance of Zebrafish 9 2.2 Identification of nicastrinhi1384/+ Zebrafish 9 2.3 Visual Motor Response Tests 10 2.4 Sampling of Adult Wild Type and nicastrinhi1384/+ Zebrafish for T-maze Behavioral Tests 11 2.5 Zebrafish T-maze Behavioral Tests 11 2.6 Statistics of Zebrafish T-maze Behavioral Tests Data 12 2.7 Microarray 13 2.8 Quantitative Real-time PCR 15 2.9 H&E Staining 16 2.10 TUNEL Staining 16 Chapter 3. Results 21 3.1 Behavioral Tests On nicastrinhi1384/+ Zebrafish Larva 21 3.2 Adult nicastrinhi1384/+ zebrafish have intact retina 22 3.3 T-maze Behavioral Tests on nicastrinhi1384/+ zebrafish 22 3.4 Transcriptomic Analysis On Adult nicastrinhi1384/+ Zebrafish 25 3.5 Validation of Microarray Results by Quantitative Real-time PCR 26 3.6 Detection of Apoptosis in Telecephalons of nicastrinhi1384/+ Zebrafish 28 Chapter 4. Discussions 40 4.1 Visual Motor Response of nicastrinhi1384/+ Zebrafish Larva 40 4.2 T-maze Behavioral Tests 41 4.3 What could we learned from microarray data ? 44 4.4 Potential Neurodegenerative Phenotypes in nicastrinhi1384/+ Zebrafish 46 4.5 Comparison of nicastrinhi1384/+ Zebrafish to Previously Described nicastrin-loss-of-function Animal Models 48 References 51 Appendix. Antibody Test for Zebrafish Endogenous Tau Protein 64 List of Abbreviations 74 | |
| dc.language.iso | en | |
| dc.title | 以斑馬魚nicastrin基因異型合子突變種為神經退化模型之研究 | zh_TW |
| dc.title | Neurodegeneration Study On Zebrafish nicastrin Heterozygous Mutants | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 管永恕(Yung-Shu Kuan),黃筱鈞(Hsiao-Chun Huang) | |
| dc.subject.keyword | 斑馬魚,神經退化,行為試驗,伽瑪分泌?,nicastrin基因異型合子突變,基因微陣列, | zh_TW |
| dc.subject.keyword | Zebrafish,Neurodegeneration,gamma-secretase,behavioral tesst,microarray,nicastrinhi1384/+, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU201803306 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-24 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 3.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
