Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74707
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕居振(Chu-Chen Chueh)
dc.contributor.authorChia-Chen Leeen
dc.contributor.author李佳蓁zh_TW
dc.date.accessioned2021-06-17T09:06:18Z-
dc.date.available2020-01-14
dc.date.copyright2020-01-14
dc.date.issued2019
dc.date.submitted2020-01-06
dc.identifier.citation1. Perez, M. P. R., A Fundamental Look at Supply side Energy Reserves For the Planet. The IEA SHC Solar Update 2015, 62, 1.
2. Kirchartz, T.; Bisquert, J.; Mora-Sero, I.; Garcia-Belmonte, G., Classification of solar cells according to mechanisms of charge separation and charge collection. Phys Chem Chem Phys 2015, 17 (6), 4007-14.
3. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews 2009, 109 (11), 5868-5923.
4. Zhou, Z.; Pang, S.; Liu, Z.; Xu, H.; Cui, G., Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A 2015, 3 (38), 19205-19217.
5. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
6. Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A 2013, 1 (18), 5628.
7. Luo, S.; Daoud, W. A., Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A 2015, 3 (17), 8992-9010.
8. Goldschmidt, V. M., Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14 (21), 477-485.
9. Brehm, J. A.; Bennett, J. W.; Schoenberg, M. R.; Grinberg, I.; Rappe, A. M., The structural diversity of ABS3 compounds with d0 electronic configuration for the B-cation. The Journal of Chemical Physics 2014, 140 (22), 224703.
10. Bhalla, A. S.; Guo, R.; Roy, R., The perovskite structure – a review of its role in ceramic science and technology. Material Research Innovations 2000, 4 (1), 3-26.
11. Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G., Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today 2014, 17 (1), 16-23.
12. Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z.-K.; Xue, J.; Yang, Y., A Review of Perovskites Solar Cell Stability. Advanced Functional Materials 2019, 1808843.
13. Kim, B. J.; Lee, S.; Jung, H. S., Recent progressive efforts in perovskite solar cells toward commercialization. Journal of Materials Chemistry A 2018, 6 (26), 12215-12236.
14. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476.
15. Bergmann, V. W.; Weber, S. A. L.; Javier Ramos, F.; Nazeeruddin, M. K.; Grätzel, M.; Li, D.; Domanski, A. L.; Lieberwirth, I.; Ahmad, S.; Berger, R., Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nature Communications 2014, 5, 5001.
16. Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C., Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (17), 1600474.
17. Petrus, M. L.; Schlipf, J.; Li, C.; Gujar, T. P.; Giesbrecht, N.; Müller-Buschbaum, P.; Thelakkat, M.; Bein, T.; Hüttner, S.; Docampo, P., Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials 2017, 7 (16), 1700264.
18. Kim, H.-S.; Seo, J.-Y.; Park, N.-G., Material and Device Stability in Perovskite Solar Cells. ChemSusChem 2016, 9 (18), 2528-2540.
19. Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; Angelis, F. D.; Boyen, H.-G., Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials 2015, 5 (15), 1500477.
20. Liu, Z.; Qiu, L.; Juarez-Perez, E. J.; Hawash, Z.; Kim, T.; Jiang, Y.; Wu, Z.; Raga, S. R.; Ono, L. K.; Liu, S. F.; Qi, Y., Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nature Communications 2018, 9 (1), 3880.
21. Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H., Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports 2013, 3, 3132.
22. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345 (6194), 295.
23. Grancini, G.; Roldan-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, M. K., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications 2017, 8, 15684.
24. Elumalai, K. N.; Mahmud, A. M.; Wang, D.; Uddin, A., Perovskite Solar Cells: Progress and Advancements. Energies 2016, 9 (11).
25. Liu, L.; Mei, A.; Liu, T.; Jiang, P.; Sheng, Y.; Zhang, L.; Han, H., Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. Journal of the American Chemical Society 2015, 137 (5), 1790-3.
26. Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T.-Y.; Lee, Y. G.; Kim, G.; Shin, H.-W.; Il Seok, S.; Lee, J.; Seo, J., A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy 2018, 3 (8), 682-689.
27. Correa-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A., Promises and challenges of perovskite solar cells. Science 2017, 358 (6364), 739.
28. Lin, Q.; Armin, A.; Burn, P. L.; Meredith, P., Organohalide Perovskites for Solar Energy Conversion. Accounts of Chemical Research 2016, 49 (3), 545-553.
29. Williams, S. T.; Rajagopal, A.; Chueh, C.-C.; Jen, A. K. Y., Current Challenges and Prospective Research for Upscaling Hybrid Perovskite Photovoltaics. The Journal of Physical Chemistry Letters 2016, 7 (5), 811-819.
30. Ansari, M. I. H.; Qurashi, A.; Nazeeruddin, M. K., Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2018, 35, 1-24.
31. Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Grätzel, M.; Hagfeldt, A., The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science 2017, 10 (3), 710-727.
32. Xiao, J.-W.; Liu, L.; Zhang, D.; De Marco, N.; Lee, J.-W.; Lin, O.; Chen, Q.; Yang, Y., The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials 2017, 7 (20), 1700491.
33. Srimath Kandada, A. R.; Petrozza, A., Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure. Accounts of Chemical Research 2016, 49 (3), 536-544.
34. Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Grätzel, M., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354 (6309), 206.
35. Tress, W., Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit - Insights Into a Success Story of High Open-Circuit Voltage and Low Recombination. Advanced Energy Materials 2017, 7 (14), 1602358.
36. Zuo, C.; Bolink, H. J.; Han, H.; Huang, J.; Cahen, D.; Ding, L., Advances in Perovskite Solar Cells. Advanced Science 2016, 3 (7), 1500324.
37. Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J., Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials 2015, 5 (20), 1500963.
38. Niu, G.; Guo, X.; Wang, L., Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 8970-8980.
39. Chu, Z.; Yang, M.; Schulz, P.; Wu, D.; Ma, X.; Seifert, E.; Sun, L.; Li, X.; Zhu, K.; Lai, K., Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nature Communications 2017, 8 (1), 2230.
40. Tsai, C.-H.; Li, N.; Lee, C.-C.; Wu, H.-C.; Zhu, Z.; Wang, L.; Chen, W.-C.; Yan, H.; Chueh, C.-C., Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. Journal of Materials Chemistry A 2018, 6 (27), 12999-13004.
41. Zhu, Z.; Zhao, D.; Chueh, C.-C.; Shi, X.; Li, Z.; Jen, A. K. Y., Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule 2018, 2 (1), 168-183.
42. Furukawa, H.; Gándara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society 2014, 136 (11), 4369-4381.
43. Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C., Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials 2011, 23 (7), 1700-1718.
44. Yuan, S.; Qin, J.-S.; Lollar, C. T.; Zhou, H.-C., Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science 2018, 4 (4), 440-450.
45. Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C., Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews 2016, 45 (8), 2327-2367.
46. Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y. S., Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Engineering Chemistry Research 2013, 52 (3), 1102-1108.
47. Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X., Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis 2014, 4 (2), 361-378.
48. Wu, M. X.; Yang, Y. W., Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Advanced Materials 2017, 29 (23).
49. Li, Y.; Pang, A.; Wang, C.; Wei, M., Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells. Journal of Materials Chemistry 2011, 21 (43), 17259-17264.
50. Vinogradov, A. V.; Zaake-Hertling, H.; Hey-Hawkins, E.; Agafonov, A. V.; Seisenbaeva, G. A.; Kessler, V. G.; Vinogradov, V. V., The first depleted heterojunction TiO2–MOF-based solar cell. Chemical Communications 2014, 50 (71), 10210-10213.
51. Chang, T. H.; Kung, C. W.; Chen, H. W.; Huang, T. Y.; Kao, S. Y.; Lu, H. C.; Lee, M. H.; Boopathi, K. M.; Chu, C. W.; Ho, K. C., Planar Heterojunction Perovskite Solar Cells Incorporating Metal-Organic Framework Nanocrystals. Advanced Materials 2015, 27 (44), 7229-35.
52. Ryu, U.; Jee, S.; Park, J.-S.; Han, I. K.; Lee, J. H.; Park, M.; Choi, K. M., Nanocrystalline Titanium Metal–Organic Frameworks for Highly Efficient and Flexible Perovskite Solar Cells. ACS Nano 2018, 12 (5), 4968-4975.
53. Li, M.; Xia, D.; Yang, Y.; Du, X.; Dong, G.; Jiang, A.; Fan, R., Doping of [In2(phen)3Cl6]·CH3CN·2H2O Indium-Based Metal-Organic Framework into Hole Transport Layer for Enhancing Perovskite Solar Cell Efficiencies. Advanced Energy Materials 2018, 8 (10), 1702052.
54. Shen, D.; Pang, A.; Li, Y.; Dou, J.; Wei, M., Metal–organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties. Chemical Communications 2018, 54 (10), 1253-1256.
55. Zhao, Y.; Zhang, Q.; Li, Y.; Zhang, R.; Lu, G., Large-Scale Synthesis of Monodisperse UiO-66 Crystals with Tunable Sizes and Missing Linker Defects via Acid/Base Co-Modulation. ACS Applied Materials & Interfaces 2017, 9 (17), 15079-15085.
56. Li, M.; Xia, D.; Yang, Y.; Du, X.; Dong, G.; Jiang, A.; Fan, R., Doping of [In2(phen)3Cl6]·CH3CN·2H2O Indium-Based Metal–Organic Framework into Hole Transport Layer for Enhancing Perovskite Solar Cell Efficiencies. Advanced Energy Materials 2018, 8 (10), 1702052.
57. Lee, J.-W.; Kim, H.-S.; Park, N.-G., Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells. Accounts of Chemical Research 2016, 49 (2), 311-319.
58. Guerrero, A.; Garcia-Belmonte, G.; Mora-Sero, I.; Bisquert, J.; Kang, Y. S.; Jacobsson, T. J.; Correa-Baena, J.-P.; Hagfeldt, A., Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements. The Journal of Physical Chemistry C 2016, 120 (15), 8023-8032.
59. Pham, N. D.; Tiong, V. T.; Yao, D.; Martens, W.; Guerrero, A.; Bisquert, J.; Wang, H., Guanidinium thiocyanate selective Ostwald ripening induced large grain for high performance perovskite solar cells. Nano Energy 2017, 41, 476-487.
60. Zarazua, I.; Han, G.; Boix, P. P.; Mhaisalkar, S.; Fabregat-Santiago, F.; Mora-Seró, I.; Bisquert, J.; Garcia-Belmonte, G., Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. The Journal of Physical Chemistry Letters 2016, 7 (24), 5105-5113.
61. Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO<sub>2</sub> reduction in water. Science 2015, 349 (6253), 1208.
62. Huang, N.; Chen, X.; Krishna, R.; Jiang, D., Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization. Angewandte Chemie International Edition 2015, 54 (10), 2986-2990.
63. Zeng, Y.; Zou, R.; Zhao, Y., Covalent Organic Frameworks for CO2 Capture. Advanced Materials 2016, 28 (15), 2855-2873.
64. El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; Keeffe, M.; Yaghi, O. M., Designed Synthesis of 3D Covalent Organic Frameworks. Science 2007, 316 (5822), 268.
65. Li, L.-H.; Feng, X.-L.; Cui, X.-H.; Ma, Y.-X.; Ding, S.-Y.; Wang, W., Salen-Based Covalent Organic Framework. Journal of the American Chemical Society 2017, 139 (17), 6042-6045.
66. El-Mahdy, A. F. M.; Young, C.; Kim, J.; You, J.; Yamauchi, Y.; Kuo, S.-W., Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Applied Materials & Interfaces 2019, 11 (9), 9343-9354.
67. Gao, Q.; Li, X.; Ning, G.-H.; Xu, H.-S.; Liu, C.; Tian, B.; Tang, W.; Loh, K. P., Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials 2018, 30 (5), 1762-1768.
68. Gomes, R.; Bhaumik, A., A new triazine functionalized luminescent covalent organic framework for nitroaromatic sensing and CO2 storage. RSC Advances 2016, 6 (33), 28047-28054.
69. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M.; Matzger, A. J.; Yaghi, O. M., Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166.
70. Jiang, Q.; Li, Y.; Zhao, X.; Xiong, P.; Yu, X.; Xu, Y.; Chen, L., Inverse-vulcanization of vinyl functionalized covalent organic frameworks as efficient cathode materials for Li–S batteries. Journal of Materials Chemistry A 2018, 6 (37), 17977-17981.
71. Ding, H.; Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.; Wang, C., An AIEgen-based 3D covalent organic framework for white light-emitting diodes. Nature communications 2018, 9 (1), 5234-5234.
72. Ding, S.-Y.; Wang, W., Covalent organic frameworks (COFs): from design to applications. Chemical Society Reviews 2013, 42 (2), 548-568.
73. Das, S.; Heasman, P.; Ben, T.; Qiu, S., Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews 2017, 117 (3), 1515-1563.
74. El-Mahdy, A. F. M.; Kuo, C.-H.; Alshehri, A.; Young, C.; Yamauchi, Y.; Kim, J.; Kuo, S.-W., Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage. Journal of Materials Chemistry A 2018, 6 (40), 19532-19541.
75. Cai, W.; Chu, C.-C.; Liu, G.; Wáng, Y.-X. J., Metal–Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small 2015, 11 (37), 4806-4822.
76. Lyu, H.; Diercks, C. S.; Zhu, C.; Yaghi, O. M., Porous Crystalline Olefin-Linked Covalent Organic Frameworks. Journal of the American Chemical Society 2019, 141 (17), 6848-6852.
77. Liu, Y.; Diercks, C. S.; Ma, Y.; Lyu, H.; Zhu, C.; Alshmimri, S. A.; Alshihri, S.; Yaghi, O. M., 3D Covalent Organic Frameworks of Interlocking 1D Square Ribbons. Journal of the American Chemical Society 2019, 141 (1), 677-683.
78. Cao, D.; Lan, J.; Wang, W.; Smit, B., Lithium-Doped 3D Covalent Organic Frameworks: High-Capacity Hydrogen Storage Materials. Angewandte Chemie International Edition 2009, 48 (26), 4730-4733.
79. Yang, H.; Du, Y.; Wan, S.; Trahan, G. D.; Jin, Y.; Zhang, W., Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles. Chemical Science 2015, 6 (7), 4049-4053.
80. Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T., A Photoconductive Thienothiophene-Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene. Angewandte Chemie International Edition 2013, 52 (10), 2920-2924.
81. Xu, H.; Gao, J.; Jiang, D., Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nature Chemistry 2015, 7, 905.
82. Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomäcker, R.; Thomas, A.; Schmidt, J., Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society 2018, 140 (4), 1423-1427.
83. Bai, L.; Phua, S. Z. F.; Lim, W. Q.; Jana, A.; Luo, Z.; Tham, H. P.; Zhao, L.; Gao, Q.; Zhao, Y., Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chemical Communications 2016, 52 (22), 4128-4131.
84. Wu, C.; Liu, Y.; Liu, H.; Duan, C.; Pan, Q.; Zhu, J.; Hu, F.; Ma, X.; Jiu, T.; Li, Z.; Zhao, Y., Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement. Journal of the American Chemical Society 2018, 140 (31), 10016-10024.
85. Bildirir, H.; Gregoriou, V. G.; Avgeropoulos, A.; Scherf, U.; Chochos, C. L., Porous organic polymers as emerging new materials for organic photovoltaic applications: current status and future challenges. Materials Horizons 2017, 4 (4), 546-556.
86. Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T., A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angewandte Chemie International Edition 2013, 52 (10), 2920-4.
87. Turan, H. T.; Kucur, O.; Kahraman, B.; Salman, S.; Aviyente, V., Design of donor–acceptor copolymers for organic photovoltaic materials: a computational study. Physical Chemistry Chemical Physics 2018, 20 (5), 3581-3591.
88. Jin, S.; Ding, X.; Feng, X.; Supur, M.; Furukawa, K.; Takahashi, S.; Addicoat, M.; El-Khouly, M. E.; Nakamura, T.; Irle, S.; Fukuzumi, S.; Nagai, A.; Jiang, D., Charge dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angewandte Chemie International Edition 2013, 52 (7), 2017-21.
89. Bessinger, D.; Ascherl, L.; Auras, F.; Bein, T., Spectrally Switchable Photodetection with Near-Infrared-Absorbing Covalent Organic Frameworks. Journal of the American Chemical Society 2017, 139 (34), 12035-12042.
90. Calik, M.; Auras, F.; Salonen, L. M.; Bader, K.; Grill, I.; Handloser, M.; Medina, D. D.; Dogru, M.; Lobermann, F.; Trauner, D.; Hartschuh, A.; Bein, T., Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. Journal of the American Chemical Society 2014, 136 (51), 17802-7.
91. Guo, J.; Xu, Y.; Jin, S.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat, M. A.; Kim, J.; Saeki, A.; Ihee, H.; Seki, S.; Irle, S.; Hiramoto, M.; Gao, J.; Jiang, D., Conjugated organic framework with three-dimensionally ordered stable structure and delocalized pi clouds. Nature Communications 2013, 4, 2736.
92. Wu, C.; Liu, Y.; Liu, H.; Duan, C.; Pan, Q.; Zhu, J.; Hu, F.; Ma, X.; Jiu, T.; Li, Z.; Zhao, Y., Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement. Journal of the American Chemical Society 2018, 140 (31), 10016-10024.
93. Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J., Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications 2014, 5, 5784.
94. Zeng, Q.; Zhang, X.; Feng, X.; Lu, S.; Chen, Z.; Yong, X.; Redfern, S. A. T.; Wei, H.; Wang, H.; Shen, H.; Zhang, W.; Zheng, W.; Zhang, H.; Tse, J. S.; Yang, B., Polymer-Passivated Inorganic Cesium Lead Mixed-Halide Perovskites for Stable and Efficient Solar Cells with High Open-Circuit Voltage over 1.3 V. Advanced Materials 2018, 30 (9).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74707-
dc.description.abstract有機無機混摻鈣鈦礦材料為新世代太陽能電池中最具潛力的材料之一,其優異的光電性質和適用低溫製程的特性,以及低成本、高效率的優勢,使其在新一代太陽能電池中異軍突起,成為最有可能商業化的有機光電材料之一,在僅僅十年之內,其最高光電轉換效率已可達到25.2%。然而因鈣鈦礦材料本身的缺陷和對水、氧及紫外光的不良穩定性,在商業化的進程中仍有重大挑戰必須克服。
在本研究中我們分別使用「金屬有機框架材料」及「共價有機框架材料」此兩種不同的介孔型材料骨架,利用其孔洞材料的特性,不僅達到介面修飾及表面鈍化的功效,更可以增加鈣鈦礦材料的穩定性,此外,除了較好的結晶性與表面型態,作為介孔型材料再加上其電子傳輸能力,更進一步提高了元件性能。除此之外,值得一提的是,比起金屬有機框架材料,共價有機框架材料擁有更高的結構可調控性,我們透過氯摻雜可以進一步調控其能階,藉由簡單摻雜可以使其作為電洞或電子傳輸層,增加了此材料使用的彈性空間。
本研究系統性的分析了介孔型材料於鈣鈦礦太陽能電池上的應用,並分別針對金屬及共價有機框架材料做不同的應用,除了增加元件性能外,更增加了鈣鈦礦材料的穩定性。
zh_TW
dc.description.abstractOrganic-inorganic hybrid perovskite has recently attracted significant attention in fabricating low-cost and high-efficiency solar cells owing to the tremendous optoelectronic properties, including a broad and tunable light-harvesting range, decent ambipolar charge-transporting capability, and low exciton binding energy. With only a few years, the recorded efficiency of perovskite solar cells (PVSCs) has raised up to 25.2%. However, it suffers from a critical intrinsic problem of low long-term stability, such as poor ultraviolet light resistance and moisture sensitivity that dramatically damage the operational stability of PVSCs. In this thesis, we demonstrate a novel approach to enhance the associated long-term stability and efficiency of PVSCs by introducing mesoporous materials into the device, showing great potential in photovoltaic application.
In chapter 2, we first employed the metal-organic frameworks (MOFs), which are three-dimensional (3D) porous crystalline materials and possess excellent moisture and chemical stabilities. The MOF/perovskite heterojunction was studied in this chapter to realize the interaction between perovskite and MOFs, and the possibility of enhancing morphology and device stability.
In chapter 3, the other kinds of porous material, covalent organic frameworks (COFs) are introduced. Notably, COFs show different characteristics from MOFs, in which COFs possess better charge transfer ability owing to the 2D conjugated properties. In addition, the structure and energy level controllability of COFs enable their application diversity. For example, by simply doping COFs, the original functionality of serving as hole-transporting layer can be converted to be serving as electron-transporting layer. Such promising features of COFs present significant merits for application in PVSCs.
After studying the possible applications of these porous materials in photovoltaic devices, their interactions with perovskite materials are also investigated. It is revealed that the porous feature of these materials benefits the perovskite heterojunction and enables great enhancement in performance and stability of PVSCs.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:18Z (GMT). No. of bitstreams: 1
ntu-108-R06524021-1.pdf: 4053331 bytes, checksum: 46f8833e6532b87a201e39e34c5c64be (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
Contents V
Figures VIII
Tables XII
Chapter 1 1
Introduction 1
1-1 Introduction of Photovoltaics 1
1-1-1 Research Background 1
1-1-2 Characterization of photovoltaics 2
1-1-3 Photovoltaic parameters 4
1-2 Perovskite Solar cells 6
1-2-1 Characterization of Perovskite 6
1-2-2 Structure and Process of Devices 7
1-2-3 Challenge of PVSCs 9
1-3 Background Research Overview 11
1-3-1 mesoporous structure 11
1-3-2 Other Applications of Mesoporous structure 12
1-3-3 MOFs/COFs heterojunctions 12
Chapter 2 19
Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zr-MOF Heterojunction Including Bilayer and Hybrid Structures 19
2-1 Introduction 19
2-2 Experimental Section 22
2-2-1 Materials 22
2-2-2 Device Fabrication 24
2-2-3 Characterization 25
2-3 Results and Discussion 26
2-3-1 Synthesis and Characterization 26
2-3-2 Using MOF as the surface modifier of NiOx HTL in p-i-n PVSC 28
2-3-3 Fabricating p-i-n PVSC using perovskite/MOF hybrid heterojunction 32
2-4 Conclusion 37
Chapter 3 46
Two-Dimensional Conjugated Covalent Organic Framework Based on Tetraphenylethylene with Bicarbazole and Pyrene Units for Perovskite Solar Cell 46
3-1 Introduction 46
3-2 Experimental Section 49
3-2-1 Materials 49
3-2-2 Device Fabrication 50
3-2-3 Characterization 51
3-3 Results and Discussion 51
3-4 Conclusion 58
Conclusion and Future work 67
Reference 69
dc.language.isoen
dc.subject鈣鈦礦zh_TW
dc.subject太陽能電池zh_TW
dc.subject孔洞材料zh_TW
dc.subject穩定性zh_TW
dc.subject異質接面zh_TW
dc.subjectstabilityen
dc.subjectperovskiteen
dc.subjectsolar cellsen
dc.subjectporous materialsen
dc.subjectheterojunctionsen
dc.title介孔材料骨架於有機無機混成鈣鈦礦太陽能電池之應用zh_TW
dc.titleApplications of Mesoporous Scaffolds in Organic-Inorganic Hybrid Perovskite Solar cellsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李文亞(Wen-Ya Lee),郭宗枋(Tzung-Fang Guo)
dc.subject.keyword鈣鈦礦,太陽能電池,孔洞材料,穩定性,異質接面,zh_TW
dc.subject.keywordperovskite,solar cells,porous materials,stability,heterojunctions,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202000021
dc.rights.note有償授權
dc.date.accepted2020-01-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved