請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74705完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳怡然(Yi-Jan Emery Chen) | |
| dc.contributor.author | Bang-An Liu | en |
| dc.contributor.author | 劉邦安 | zh_TW |
| dc.date.accessioned | 2021-06-17T09:06:16Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-02 | |
| dc.identifier.citation | [1] J. Puskely, Y. Aslan, A. Roederer, A. Yarovoy, ‘‘SIW based antenna array with power equalization in elevation plane for 5G base stations,’’ in Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), London, U.K., Apr. 2018, pp. 1–5. [2] M. K. Ishfaq, T. A. Rahman, Y. Yamada, and K. Sakakibara, ‘‘8×8 phased series fed patch antenna array at 28 GHz for 5G mobile base station antennas,’’ in Proc. IEEE-APS Topical Conf. Antennas Propag. Wireless Commun. (APWC), Verona, Italy, Sep. 2017, pp. 160–162. [3] T. Elhabbash and T. Skaik, ‘‘Design of dual-band dual-polarized MIMO antenna for mm-wave 5G base stations with octagonal prism structure,’’ in Proc. IEEE 7th Palestinian Int. Conf. Electr. Comput. Eng. (PICECE), Gaza, Palestine, Mar. 2019, pp. 1–6. [4] H. C. Yang, Yi Fan, and X.Y. Liu, ‘‘A compact dual-band stacked patch antenna with dual circular polarizations for BeiDou navigation satellite systems,’’ IEEE Antennas Wireless Propag. Lett., vol. 18, no. 7, pp. 1472-1476, Jul. 2019. [5] F.-P. Lai, H.-J. Li, C.-M. Li, P.-J. Wang, and Y.-S. Chen, ‘‘A multipart 5G base-station antenna using series-fed patch antenna sub-arrays,’’ in Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, Boston, MA, USA, Jul. 2018, pp. 641–642. [6] M. M. M. Ali and A.-R. Sebak, ‘‘Design of compact millimeter wave massive MIMO dual-band (28/38 GHz) antenna array for future 5G communication systems,’’ in Proc. 17th Int. Symp. Antenna Technol. Appl. Electromagn. (ANTEM), Montreal, QC, Canada, Jul. 2016, pp. 1–2. [7] R. Y. Mianroodi, H. Aliakbarian, and G. A. E. Vandenbosch, ‘‘Dual-port dual-band (28/38 GHz) SIW leaky wave antenna for 5G base stations,’’ in Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), London, U.K., Apr. 2018, pp. 1–4. [8] S. F. Jilani and A. Alomainy, ‘‘Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks,’’ IET Microw., Antennas Propag., vol. 12, no. 5, pp. 672–677, Apr. 2018. [9] M.J. Chen, N.C. Liu, W.R. Xue, and J.H. Tarng, ‘‘Compact millimeter-wave triband Quasi-Yagi antenna for 5G and WiGig applications,’’ Phot. Electromagn. Res. Symp. - Spring (PIERS-Spring), 2019. [10] I. Hwang, H. Jo, B. K. Ahn, J. Oh, and J. Yu, ‘‘Cavity-backed stacked patch array antenna with dual polarization for mmWave 5G base stations,’’ in Proc. 13th Eur. Conf. Antennas Propag. (EuCAP), Krakow, Poland, Apr. 2019, pp. 1–5. [11] L. Wei, H. Hui, and W. Bin, ‘‘Dual polarization millimeter-wave antenna for microcell base station,’’ Int. Sympos. on Ant. and Propag. (ISAP), Jan. 2019. [12] C. Zhao, Y. Liu, Y. Zhang, A. Ren, Y. Jia, ‘‘Broadband dual polarization antenna array for 5G millimeter wave applications,’’ in Proc. IEEE Wireless Commun. Netw. Conf., Doha, Qatar, Apr. 2016, pp. 1–4 [13] S. I. Orakwue, R. Ngah, T. A. Rahman, ‘‘A two dimensional beam scanning array antenna for 5G wireless communications,’’ IEEE Wirel. Commun. and Netw. Conf. Worksh. (WCNCW), Apr. 2016. [14] H. Chu and Y.-X. Guo, ‘‘A filtering dual-polarized antenna subarray targeting for base stations in millimeter-wave 5G wireless communications,’’ IEEE Trans. Compon., Packag., Manuf. Technol., vol. 7, no. 6, pp. 964–973, Jun. 2017. [15] S. Maci, G. B. Gentili, P. Piazzesi, C. Salvador, ‘‘Dual-band slot-loaded patch antenna,’’ IEE Microw., Antennas Propag., 1995. [16] M. Ibraheam, M. Ibraheam, S. Irteza, R. Stephan, and M. A. Hein, ‘‘Dual-band dual-polarized stub-loaded patch antenna for robust GNSS receivers,’’ 10th Eur. Conf. Antennas Propag. (EuCAP), 2016. [17] H. Hu, F. Lai, and Y. Chen, ‘‘Dual-band dual-polarized scalable antenna subarray for compact millimeter-wave 5G base stations,’’ IEEE Access, vol. 8, July. 2020. [18] S. Lee, S. Kim, and J. Choi, ‘‘Dual-band dual-polarized proximity fed patch antenna for 28 GHz/39 GHz 5G millimeter-wave communications,’’ 13th Eur. Conf. Antennas Propag. (EuCAP), 2019. [19] M. Stanley, Y. Huang, H. Wang, H. Zhou, A. Alieldin, S. Joseph, C. Song, and T. Jia, ‘‘A dual-band dual-polarised stacked patch antenna for 28 GHz and 39 GHz 5G millimetre-wave communication,’’ 13th Eur. Conf. Antennas Propag. (EuCAP), 2019. [20] C. Chu, J. Zhu, S. Liao, A Zhu, and Q. Xue, ‘‘28/38 GHz dual-band dual-polarized highly isolated antenna for 5G phased array applications,’’ IEEE MTT-S Int. Wir. Sym. (IWS), 2019. [21] S.-C Chen, ‘‘Phased antenna array module for user equipment at sub-6 GHz and millimeter wave frequency for 5G mobile communication application,’’ M.S. thesis, National Taiwan University, 2019. [22] K. R. Mahmoud and A. M. Montaser, ‘‘Performance of tri-band multi-polarized array antenna for 5G mobile base station adopting polarization and directivity control,’’ IEEE Access, vol. 6, pp. 8682–8694, Mar. 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74705 | - |
| dc.description.abstract | 本論文提出一毫米波雙頻雙極化短樁貼片天線,操作頻率為28及39 GHz,結合5G相控陣列特定應用積體電路於五層印刷電路板實現主動式封裝天線,晶片與天線間的傳輸損耗低,且面積小適合應用於行動通訊用戶裝置,為5G毫米波通訊系統中的重要收發模組。陣列設計利用旋轉對稱技術提升極化純度,前端電路使用Anokiwave公司開發的數位波束成型積體電路,以微控制器可調控增益及相位進而實現波束成型。模擬中2×2雙頻雙極化天線陣列最大增益為9.4-11.5 dBi,由積體電路提供之增益為24 dB,量測波束成型系統之最大增益為34.0-35.5 dBi。 本論文亦提出一毫米波三頻堆疊貼片天線,操作頻率為26、40及68.5 GHz,上層貼片設計的槽孔及短樁結構可產生三頻共振,而下層矩形貼片則為優化輻射場型於68.5 GHz,並同時增加中、低頻頻寬,三頻堆疊貼片天線最大增益分別為4.38、5.0及5.0 dBi,基於此三頻堆疊貼片天線,延伸設計為1×4雙極化陣列,三頻雙極化增益為8.6-10.5 dBi,天線單元及陣列之整體寬度均小於目前主流手機厚度,垂直立於手機側面可取代端射天線,將有益於手機內部空間利用。 | zh_TW |
| dc.description.abstract | In this paper, a dual-band dual-polarization stub-loaded antenna operating at 28 and 39 GHz is developed. Combining with the 5G beamforming ASIC, the active antenna in package (AiP) is realized in five-layer PCB. AiP is the best solution to reduce the transmission loss between antenna and ICs. Due to its small size, AiP is suitable for mobile communication user equipment. The proposed beamforming system is an important 5G transceiver module of 5G millimeter-wave communications. To improve the polarization purity for the antenna array, the rotation symmetry technology is utilized. The digital front-end circuit, developed by Anokiwave, Inc., provides adjustable gain and phase and supports both TX and RX operations. The phased array is controlled by a microcontroller unit. The simulated maximum gain of the 2×2 dual-band dual-polarization antenna array is 9.4-11.5 dBi, and the maximum gain of ICs is 24 dB. The measured maximum gain of the beamforming system is 34.0-35.5 dBi. A tri-band stacked patch antenna operating at 26, 40, and 68.5 GHz is also developed in this paper. The top layer is a stub-loaded patch with slots which is designed for tri-band resonances. The bottom rectangular patch is optimized for the radiation pattern at 68.5 GHz and the bandwidth for 26 and 40 GHz. The proposed antenna simulated maximum gains are 4.38/5.0/5.0 dBi at 26/40/68.5 GHz, respectively. Based on the proposed antenna, the tri-band dual-polarization 1×4 array is designed, and the maximum gain becomes 8.6-10.5 dBi. The overall widths of both the proposed antenna element and array are smaller than the thickness of mainstream mobile phones. It can replace the end-fire antenna on the side of the mobile phone to make good use of the space in mobile phones. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T09:06:16Z (GMT). No. of bitstreams: 1 U0001-0102202116245200.pdf: 8011389 bytes, checksum: 447359dcacbc9cbc998313e81ff17709 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 I 誌謝 III 中文摘要 V ABSTRACT VII 目錄 IX 圖目錄 XI 表格目錄 XVII Chapter 1 緒論 1 1.1 研究動機 1 1.2 論文貢獻與架構 2 Chapter 2 天線文獻回顧 3 2.1 雙頻天線文獻回顧 3 2.2 雙極化天線文獻回顧 7 2.3 雙頻雙極化天線文獻回顧 10 2.4 三頻天線文獻回顧 18 2.5 陣列理論及波束成型系統 24 2.5.1 天線陣列理論 24 2.5.2 波束成型電路 26 Chapter 3 雙頻雙極化天線及封裝設計 27 3.1 雙頻雙極化天線設計 27 3.2 波束成型積體電路 41 3.3 印刷電路板設計 42 3.4 波束成型系統 58 Chapter 4 雙頻雙極化封裝天線量測 65 4.1 積體電路及量測環境設置 66 4.2 28 GHz及39 GHz雙極化封裝天線量測 69 4.3 量測結果探討及比較 87 4.4 軟體定義無線電應用 89 Chapter 5 毫米波三頻雙極化天線 93 5.1 三頻天線設計 93 5.2 三頻天線雙極化陣列 101 Chapter 6 結論 118 參考文獻 119 | |
| dc.language.iso | zh-TW | |
| dc.subject | 相位陣列 | zh_TW |
| dc.subject | 雙頻雙極化天線 | zh_TW |
| dc.subject | 封裝天線 | zh_TW |
| dc.subject | 三頻天線 | zh_TW |
| dc.subject | dual-band dual-polarization antenna | en |
| dc.subject | phased array | en |
| dc.subject | antenna in package | en |
| dc.subject | tri-band antenna | en |
| dc.title | 5G毫米波多頻雙極化封裝天線 | zh_TW |
| dc.title | Multi-Band Dual-Polarization Antenna Design for Antenna-in-Package at Millimeter-Wave Frequencies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周錫增(Hsi-Tseng Chou),林丁丙(Ding-Bing Lin),余建德(Jian-De Yu) | |
| dc.subject.keyword | 雙頻雙極化天線,相位陣列,封裝天線,三頻天線, | zh_TW |
| dc.subject.keyword | dual-band dual-polarization antenna,phased array,antenna in package,tri-band antenna, | en |
| dc.relation.page | 121 | |
| dc.identifier.doi | 10.6342/NTU202100333 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0102202116245200.pdf 未授權公開取用 | 7.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
