Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74703
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉(Shang-Ling Lo)
dc.contributor.authorTing-Fang Jhengen
dc.contributor.author鄭婷方zh_TW
dc.date.accessioned2021-06-17T09:06:14Z-
dc.date.available2030-01-07
dc.date.copyright2020-02-04
dc.date.issued2020
dc.date.submitted2020-01-08
dc.identifier.citationAbyaneh, H. Z. (2014). Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. Journal of Environmental Health Science and Engineering, 12(1), 40.
Adler, R. W., Landman, J. C., and Cameron, D. M. (1993). The clean water act 20 years later. Island Press.
Çamdevýren, H., Demýr, N., Kanik, A., and Keskýn, S. (2005). Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecological modelling, 181(4), 581-589.
Chau, K. W., Cheng, C. T. (2002). Real-time prediction of water stage with artificial neural network approach. Lecture Notes in Artificial Intelligence 2557, 715.
Chau, K. W. (2006). A review on integration of artificial intelligence into water quality modelling. Marine pollution bulletin, 52(7), 726-733.
Chen, T., and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. arXiv:1603.02754.
Chenini, I., and Khemiri, S. (2009). Evaluation of ground water quality using multiple linear regression and structural equation modeling. International Journal of Environmental Science and Technology, 6(3), 509-519.
Chou, J. S., Ho, C. C., and Hoang, H. S. (2018). Determining quality of water in reservoir using machine learning. Ecological informatics, 44, 57-75.
Couto, C., Vicente, H., Machado, J., Abelha, A., and Neves, J. (2012). Water quality modeling using artificial intelligence-based tools. International Journal of Design and Nature and Ecodynamics, 7(3), 300-309.
Du, X., Wang, J., Jegatheesan, V., and Shi, G. (2018). Dissolved oxygen control in activated sludge process using a neural network-based adaptive pid algorithm. Applied Sciences, 8(2), 261.
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor, M. (2006). Our data, ourselves: Privacy via distributed noise generation. Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Garrett, J. (1994). Where and why artificial neural networks are applicable in civil engineering. Journal of Computing in Civil Engineering, 8(2):129-130
Hamed, M. M., Khalafallah, M. G., and Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling and Software, 19(10), 919-928.
Heddam, S., and Kisi, O. (2017). Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Environmental Science and Pollution Research, 24(20), 16702-16724.
Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. arXiv:1309.6835.
Holenda, B., Domokos, E., Redey, A., and Fazakas, J. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers and Chemical Engineering, 32(6), 1270-1278.
Ian Goodfellow and Yoshua Bengio and Aaron Courville (2016). Deep learning, MIT Press.
Khan, Y. and See , C. S. (2016). Predicting and analyzing water quality using Machine Learning: A comprehensive model. Systems, Applications and Technology Conference (LISAT), 2016 IEEE Long Island, IEEE.
Kim, H., Lim, H., Wie, J., Lee, I., and Colosimo, M. F. (2014). Optimization of modified ABA2 process using linearized ASM2 for saving aeration energy. Chemical Engineering Journal, 251, 337-342.
Kralisch, S., Fink, M., Flügel, W. A., and Beckstein, C. (2003). A neural network approach for the optimisation of watershed management. Environmental Modelling and Software, 18(8-9), 815-823.
Lek, S., and Guégan, J. F. (1999). Artificial neural networks as a tool in ecological modelling, an introduction. Ecological modelling, 120(2-3), 65-73.
Li, P., and Zhang, J. S. (2018). A new hybrid method for China’s energy supply security forecasting based on arima and xgboost. Energies, 11(7), 1687.
Liu, Y., Pan, Y., Sun, Z., and Huang, D. (2014). Statistical monitoring of wastewater treatment plants using variational Bayesian PCA. Industrial and Engineering Chemistry Research, 53(8), 3272-3282.
Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., and Gan, D. (2018). Cloud-based cyber-physical intrusion detection for vehicles using Deep Learning. IEEE Access, 6, 3491-3508.
Maier, H. R., Morgan, N., and Chow, C. W. (2004). Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environmental Modelling and Software, 19(5), 485-494.
O’Brien, M., Mack, J., Lennox, B., Lovett, D., and Wall, A. (2011). Model predictive control of an activated sludge process: A case study. Control Engineering Practice, 19(1), 54-61.
Patterson, J. and A. Gibson (2017). Deep learning: A practitioner's approach, O'Reilly Media, Inc.
Phelps, E. B. and H. Streeter (1958). A study of the pollution and natural purification of the Ohio River. US Department of Health, Education, and Welfare.
Reardon, D. J. (1995). Turning down the power. Civil Engineering, 65(8), 54.
Rosso, D., Larson, L. E., & Stenstrom, M. K. (2008). Aeration of large-scale municipal wastewater treatment plants: state of the art. Water Science and Technology, 57(7), 973-978.
Rumelhart, D. E., Widrow, B., and Lehr, M. A. (1994). The basic ideas in neural networks. Communications of the ACM, 37(3), 87-93.
Sarkar, A. and Pandey P. (2015). River water quality modelling using artificial neural network technique. Aquatic Procedia, 4: 1070-1077.
Serodes, J. B., Rodriguez, M. J. (1996). Predicting residual chlorine evolution in storage tanks within distribution systems – application of a neural-network approach. Journal of Water Supply Research and Technology, 45 (2), 57–66.
Snow, J. (1855). On the mode of communication of cholera, John Churchill.
Torlay, L., Perrone Bertolotti, M., Thomas, E., and Baciu, M. (2017). Machine learning–XGBoost analysis of language networks to classify patients with epilepsy. Brain informatics, 4(3), 159.
Vuksanovic, V., De Smedt, F., and Van Meerbeeck, S. (1996). Transport of polychlorinated biphenyls (PCB) in the Scheldt Estuary simulated with the water quality model WASP. Journal of Hydrology, 174(1-2), 1-18.
Wang, X., Ratnaweera, H., Holm, J. A., and Olsbu, V. (2017). Statistical monitoring and dynamic simulation of a wastewater treatment plant: a combined approach to achieve model predictive control. Journal of environmental management ,193, 1-7.
Whitehead, P., Wilby, R., Battarbee, R., Kernan, M., and Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101-123.
Wu, Z. Y., El Maghraby, M., and Pathak, S. (2015). Applications of deep learning for smart water networks. Procedia Engineering, 119, 479-485.
Zou, R., Lung, W. S., and Guo, H. (2002). Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty. Journal of computing in civil engineering, 16(2), 135-142.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74703-
dc.description.abstract在污水處理廠中,維持設備的正常運轉需要消耗大量的電力,而二級處理中的曝氣槽更是位居消耗電能首位,佔所有電力成本的45-75%。透過對曝氣槽中可即時監測之數據進行溶氧預測,可達到有效控制曝氣槽電力的消耗,並且能夠增加曝氣槽針對水質淨化的效率。因此,本研究將利用以往及目前較為熱門之模型針對曝氣槽溶氧預測效能進行比對,並且選出該曝氣槽最合適的預測模型。
本研究使用桃園龜山污水處理廠2018年之每日實驗數據取pH值、溫度、COD與SS為輸入之特徵值進行模型的建立,分別使用多元線性迴歸,XGBoost、深度神經網絡進行溶氧分類預測。由於資料庫的數量不足,本研究於前處理階段使用高斯白噪音擴增數據至每筆特徵值2184筆。而後使用多元線性迴歸套入一次項與二次項的特徵值分類預測,結果顯示一次項之模型得到最好的預測準確率為85.81%,而AUC (Area under ROC curve) 為77.95%。再者,利用XGBoost建立模型所獲得之準確率達92.45%,AUC為87.61%。最後,在利用深度神經網絡兩層隱藏層與三層隱藏層中,可得到最佳化的模型為兩層隱藏層之DNN,第一層隱藏層為95個節點,第二層為115個節點,此模型在訓練與驗證準確率分別達到86.83%與82.15%,AUC得到78.83%。由三個模型比較,可發現利用XGBoost所建立之模型可較有效的預測溶氧的分類;此外,透過非線性模型之建立,更能捕捉二級處理中曝氣槽的水質特性。
zh_TW
dc.description.abstractIn employing wastewater treatment, maintaining equipment functionality requires a large amount of electricity. Furthermore, the aeration tank in the secondary treatment consumes the highest portion, accounting for 45-75% of all electricity costs. Through the prediction of dissolved oxygen (DO) by the data that can be real-time monitored in the aeration tank, the consumption of the aeration tank power can be effectively controlled. Moreover, the efficiency of the aeration tank for water purification can be improved. Therefore, the objective of this study is to compare effectiveness of popular models from the past and present in predicting DO in the aeration tank in terms of classification, and finally select the most suitable model for the aeration tank.
In this study, daily experimental data of the wastewater treatment plant in Taoyuan, Taiwan during 2018 is used to establish the models. Values of pH, temperature, COD and SS are considered as related parameters to DO and are used as model inputs. In this study, three models are utilized for comparison: multiple linear regression, XGBoost and deep neural network (DNN). At first, the database is extended from 365 sets to 2184 sets by adding Gaussian white noise to the measurements. Then, multiple linear regression is used to predict the classification of DO based on different polynomial functions. The result shows that using model with 2nd order polynomial function predicts best performance with accuracy of 85.58%, and AUC (Area under ROC curve) of 76.52%. In addition, the accuracy of using XGBoost is 89%, and with AUC up to 87.30%. Finally, DNN with two hidden layers and three hidden layers are constructed and compared, the optimized model can be obtained when DNN model consists of two hidden layers. The results show that the accuracy of training and validation of the model reaches 86.83% and 82.15%, respectively, while the AUC yielded 78.83%.
As a result, the model established by XGBoost can more effectively predict the classification of DO than the other two types of models. Moreover, the water quality characteristics of the aeration tank in the secondary treatment can be better extracted using a nonlinear model.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:14Z (GMT). No. of bitstreams: 1
ntu-109-R06541126-1.pdf: 6039763 bytes, checksum: 0ba131fd8511033fbfedf8daafcfbdcc (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審書 ....... #
誌謝 ....... I
摘要 ....... II
Abstract ....... III
目錄 ....... V
圖目錄 ....... VIII
表格目錄 ....... XI
第一章 緒論 ....... 1 1.1
研究動機 ....... 1
1.2 研究內容 ....... 2
第二章 文獻回顧 ....... 3
2.1 水質模式對於預測的重要性 ....... 3
2.1.1 水質模式對於預測的重要性 ....... 3
2.2 深度學習 ....... 8
2.2.1 多元線性迴歸分析 ....... 8
2.2.2 XGBoost ....... 12
2.2.3 人工類神經網路 ....... 16
2.2.4 深度神經網路 ....... 21
2.3 模型特徵值參數之選擇 ....... 22
2.4 小結 ....... 23
第三章 研究方法 ....... 24
3.1 研究流程 ....... 24
3.2 應用工具 ....... 26
3.2.1 Python ....... 26
3.2.2 TensorFlow ....... 26
3.3 前處理(Pre-Processing) ....... 27
3.4 多元線性迴歸(Multiple Linear Regression) ....... 29
3.4.1 多元線性迴歸模式 ....... 29
3.4.2 損失函數(Loss Function) ....... 29
3.4.3 梯度下降法(Gradient Descent) ....... 30
3.5 XGBoost (Extreme Gradient Boosting) ....... 33
3.5.1 XGBoost 使用 ....... 33
3.5.2 目標函數(objective function) ....... 33
3.6 深度神經網絡(Deep Neural Network) ....... 36
3.6.1 深度類神經網路(Deep Neural Network) ....... 36
3.6.2 激勵函數(Activation function) ....... 37
3.7 驗證 ....... 39
第四章 結果與討論 ....... 42
4.1 前處理(Pre-Processing) ....... 42
4.1.1 原始數據 ....... 42
4.1.2 高斯白噪音處理 ....... 45
4.1.3 離差標準化之數據 ....... 53
4.2 多元線性迴歸(Multiple Linear Regression) ....... 54
4.3 XGBoost ....... 60
4.4 深度類神經網絡(DNN) ....... 62
4.5 模型比較 ....... 71
第五章 結論與建議 ....... 74
5.1 結論 ....... 74
5.2 建議 ....... 75
參考文獻 ....... 76
dc.language.isozh-TW
dc.title應用深度學習預測污水處理廠曝氣槽之溶氧zh_TW
dc.titlePrediction of Dissolved Oxygen in Aeration Tank of Wastewater Treatment Plant Based on Deep Learning Algorithmen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee闕蓓德(Pei-Te Chiueh),胡景堯(Ching-Yao Hu)
dc.subject.keyword高斯白噪音,深度學習,多元線性迴歸,XGBoost,深度神經網絡,zh_TW
dc.subject.keywordGaussian White Noise,Deep Learning,Multiple Linear Regression,XGBoost,Deep Neural Network,Dissolved Oxygen Prediction,en
dc.relation.page80
dc.identifier.doi10.6342/NTU202000043
dc.rights.note有償授權
dc.date.accepted2020-01-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  目前未授權公開取用
5.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved