請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7466
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許秉寧 | |
dc.contributor.author | Wei-Yan Liu | en |
dc.contributor.author | 劉威延 | zh_TW |
dc.date.accessioned | 2021-05-19T17:44:16Z | - |
dc.date.available | 2021-09-04 | |
dc.date.available | 2021-05-19T17:44:16Z | - |
dc.date.copyright | 2018-09-04 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-14 | |
dc.identifier.citation | 參考資料
Barber, D.L., Wherry, E.J., Masopust, D., Zhu, B., Allison, J.P., Sharpe, A.H., Freeman, G.J., and Ahmed, R. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682-687. Bengsch, B., Johnson, A.L., Kurachi, M., Odorizzi, P.M., Pauken, K.E., Attanasio, J., Stelekati, E., McLane, L.M., Paley, M.A., Delgoffe, G.M., et al. (2016). Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8+ T Cell Exhaustion. Immunity 45, 358-373. Chang, C.-H., Curtis, J.D., Maggi, L.B., Faubert, B., Villarino, A.V., O’Sullivan, D., Huang, S.C.-C., van der Windt, G.J.W., Blagih, J., Qiu, J., et al. (2013). Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell 153, 1239-1251. Fisicaro, P., Barili, V., Montanini, B., Acerbi, G., Ferracin, M., Guerrieri, F., Salerno, D., Boni, C., Massari, M., Cavallo, M.C., et al. (2017). Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat Med 23, 327-336. Guo, C., Sun, L., Chen, X., and Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research 8, 2003-2014. Huang, Y.-H., Zhu, C., Kondo, Y., Anderson, A.C., Gandhi, A., Russell, A., Dougan, S.K., Petersen, B.-S., Melum, E., Pertel, T., et al. (2015). CEACAM1 regulates TIM–3–mediated tolerance and exhaustion. Nature 517, 386-390. Jones, R.B., Ndhlovu, L.C., Barbour, J.D., Sheth, P.M., Jha, A.R., Long, B.R., Wong, J.C., Satkunarajah, M., Schweneker, M., Chapman, J.M., et al. (2008). Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. The Journal of Experimental Medicine 205, 2763-2779. Klein Geltink, R.I., O’Sullivan, D., Corrado, M., Bremser, A., Buck, M.D., Buescher, J.M., Firat, E., Zhu, X., Niedermann, G., Caputa, G., et al. (2017). Mitochondrial Priming by CD28. Cell 171, 385-397.e311. Liang, T.J. (2009). Hepatitis B: The Virus and Disease. Hepatology (Baltimore, Md) 49, S13-S21. Nebbia, G., Peppa, D., Schurich, A., Khanna, P., Singh, H.D., Cheng, Y., Rosenberg, W., Dusheiko, G., Gilson, R., ChinAleong, J., et al. (2012). Upregulation of the Tim-3/Galectin-9 Pathway of T Cell Exhaustion in Chronic Hepatitis B Virus Infection. PLOS ONE 7, e47648. Pauken, K.E., and Wherry, E.J. (2015). Overcoming T cell exhaustion in infection and cancer. Trends in Immunology 36, 265-276. Pearce, E.L., Poffenberger, M.C., Chang, C.-H., and Jones, R.G. (2013). Fueling Immunity: Insights into Metabolism and Lymphocyte Function. Science (New York, NY) 342, 1242454-1242454. Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K., and Anderson, A.C. (2010). Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. The Journal of Experimental Medicine 207, 2187. Scharping, N.E., Menk, A.V., Moreci, R.S., Whetstone, R.D., Dadey, R.E., Watkins, S.C., Ferris, R.L., and Delgoffe, G.M. (2016). The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity 45, 374-388. Schurich, A., Pallett, Laura J., Jajbhay, D., Wijngaarden, J., Otano, I., Gill, Upkar S., Hansi, N., Kennedy, Patrick T., Nastouli, E., Gilson, R., et al. (2016). Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8 T Cells in the Same Host. Cell Reports 16, 1243-1252. Sena, Laura A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, David A., Wang, C.-R., Schumacker, Paul T., Licht, Jonathan D., Perlman, H., et al. (2013). Mitochondria Are Required for Antigen-Specific T Cell Activation through Reactive Oxygen Species Signaling. Immunity 38, 225-236. Siska, P.J., Weinberg, J.B., Rao, A.V., Bain, J.R., Muehlbauer, M.J., Liu, T., and Rathmell, J. (2014). Acute and Chronic Lymphocytic Leukemia Induces Exhaustion and Suppresses Metabolic Reprogramming in T Cell Activation. Blood 124, 4121. Ye, B., Liu, X., Li, X., Kong, H., Tian, L., and Chen, Y. (2015). T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis 6, e1694. Yin, Y., Metzger, T., and Bailey-Bucktrout, S. (2016). Tumor infiltrating T cells have abnormal lipid metabolism that can be modulated by PD-L1 blockade. The Journal of Immunology 196, 144.121. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7466 | - |
dc.description.abstract | B型肝炎病毒(Hepatitis B virus)是一種雙股DNA病毒,世界上大約兩億五千七百萬人處於B型肝炎感染當中。大多數成人感染B型肝炎之後會康復,但是大約5%~10%的比例會無法完全清除HBV病毒的感染,形成慢性感染,並且為罹患肝硬化或是肝癌的高危險群,然而現行已經有安全且有保護效力的疫苗存在可以預防B型肝炎,卻還沒有能有效清除已感染B型肝炎病人病毒的醫療方法。從先前的研究中發現,在HBV慢性感染小鼠動物模式之下,可以分析出表現PD-1(Programmed Death 1)、TIM-3(T-cell immunoglobulin and mucin-domain containing-3)等co-inhibitory受器的肝內CD8+ T細胞族群,並且具有葡萄糖代謝作用功能失調的現象,而之後在PD-1基因剔除的LCMV慢性感染小鼠研究中顯示葡萄糖代謝作用功能可以被部分回復,顯示出PD-1影響了葡萄糖代謝功能的作用,成為發展至後期的exhaustion現象的關鍵,而在小鼠癌症動物模式當中,也發現了co-inhibitory受器PD-1、TIM-3表現的程度、數量與粒腺體質量下降和葡萄糖的攝取呈正相關。然而是否共抑制性受體會影響粒線體功能仍然不清楚。
在我們實驗室先前的研究當中,對於HBV慢性感染小鼠處理anti-PD-1抗體可以加強小鼠對於HBV的清除能力,然而無法完全清除,顯示可能透過其它途徑影響了清除病毒的能力。在我們的結果顯示,HBV慢性感染小鼠中,肝內淋巴細胞CD8+ T細胞表現PD-1、TIM-3表面受器,並且表現出粒線體呼吸作用功能失調的現象,體外處理HBV慢性感染小鼠CD8+ T細胞抗PD-1、Tim-3抗體或是粒線體抗氧化劑回復CD8+ T細胞粒線體膜電位以及IFNγ的產生量。綜上所述,HBV慢性感染中共抑制性受體的表現與CD8+ T細胞粒線體呼吸作用失調現象關聯,影響T細胞的細胞激素的分泌,並且透過阻斷PD-1以及Tim-3或者是處理粒線體抗氧化劑得以回復肝內淋巴細胞CD8+ T細胞粒線體膜電位。顯示出在B型肝炎病毒感染中所造成T細胞衰竭的現象可能涉及細胞能量代謝的異常,經由免疫代謝的調節可能可提升這些T細胞的功能,並作為治療的一個方向。 | zh_TW |
dc.description.abstract | Hepatitis B virus is a double-stranded DNA virus. About 257 million people in the world are infected with hepatitis B virus. Most adults recover from hepatitis B infection, but approximately 5% to 10% of the population will not completely eliminate HBV infection, develop chronic infections, and are at high risk of cirrhosis or liver cancer. However, there are currently safe and protective vaccines can prevent hepatitis B, but it has not yet been able to effectively remove the virus from infected patients with hepatitis B. From previous studies, it has been found that PD-1 (Programmed Death 1) and TIM-3 (T-cell immunoglobulin and mucin-domain containing-3) can be detected under the HBV chronic infected mouse animal model, and displayed dysfunctional glucose metabolism. Subsequent studies in PD-1 knockout mice challenged with LCMV have shown that glucose metabolism of CD8+ T cells can be partially restored compared to wildtype LCMV infected mice, indicating PD -1 affects the function of glucose metabolism and becomes the key to the development of exhaustion in the later period. In mouse cancer animal models, the degree, number, and extent of expression of co-inhibitory receptors PD-1 and TIM-3 have also been found that positively correlated with decreased mitochondrial mass and rate of glucose uptake. However, whether co-inhibitory receptors affect mitochondrial function is still unclear.
In previous studies in our laboratory, treatment of anti-PD-1 antibodies in mice chronically infected with HBV enhanced the ability of mice to remove HBV, but it could not be completely eliminated, indicating that the ability to eliminate the virus may be affected by other pathways. Our results show that in chronically HBV infected mice, intrahepatic CD8+ T cells expressed PD-1, Tim-3 surface co-inhibitory receptors and displayed dysfunctional mitochondrial function. In vitro treating CD8+ T cells from HBV chronic infected mice with anti-PD-1, anti-Tim-3 or antioxidant can increase CD8+ T cells mitochondrial membrane potential and IFNγ production. In summary, the expression of co-inhibitory receptors in chronic HBV infected mice is associated with the dysregulation of mitochondrial function and cytokine production in CD8+ T cells and through blocking PD-1 and Tim-3 or treating mitochondrial antioxidant can partially restore T cell response. It has been shown that the phenomenon of sputum cell exhaustion caused by hepatitis B virus infection may involve in cellular energy metabolism, and regulation of immune metabolism may enhance the function of these sputum cells and serve as a direction of treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:44:16Z (GMT). No. of bitstreams: 1 ntu-107-R05449009-1.pdf: 2122457 bytes, checksum: d7111221575bc6f4710713a010e79cd0 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 謝辭…………………………………………………………………………………...1
英文摘要……………………………………………………………………………...2 中文摘要…………………………………………………………………………........4 第一章 引言...………………………………………………………………………..7 1. B型肝炎……………………………………………………………………...7 2. T細胞耗竭…………………………………………………………………...7 3. T細胞免疫代謝……………………………………………………………...8 4. B型肝炎與T細胞免疫代謝功能之關聯…………………………………..8 5. 研究動機與目的……………………………………………………………10 第二章 實驗材料與方法…………………………………………………………...11 第三章 實驗結果…………………………………………………………………...16 1.HBV慢性感染小鼠肝內CD8+ T細胞表達PD-1以及Tim-3共抑制性受體並且IFNγ表達量下降………………………………………………….16 2.HBV慢性感染小鼠肝內CD8+ T細胞表現粒線體膜電位下降以及粒線體ROS累積量上升表徵………………………………………………………16 3.表達共抑制性受體之肝內淋巴細胞CD8+ T細胞經過體外CD3、CD28刺激無法活化粒線體膜電位訊號並維持低電位表現…………………….17 4.共抑制性受體配體降低粒線體膜電位之訊號,以及呼吸作用之氧氣消耗速率而阻斷PD-1、Tim-3訊號處理之後回復粒腺體之膜電位訊號以及呼吸作用的氧氣消耗速率…………………………………………….17 5.共抑制性受體配體降低CD8+ T細胞IFNγ產生而處理PD-1、Tim-3抗體或是粒線體抗氧化劑後回復IFNγ產生量…………………….......17 6.阻斷共抑制性受體之訊號回復BV慢性感染小鼠之肝內淋巴細胞CD8+ T細胞之粒線體膜電位訊號……………………………………………...18 7.粒線體抗氧化劑處理之HBV感染小鼠肝內CD8+ T細胞提高IFNγ表現量………………………………………………………………………...18 第四章 討論………………………………………………………………………...19 1.HBV高壓水注射小鼠動物模式T細胞免疫反應……………………….19 2.肝內T細胞免疫代謝功能在HBV慢性感染所誘發之T細胞耗竭當中降低粒線體膜電位、葡萄糖攝取效率……………………………….…… 19 3.共抑制性受體訊號降低CD8+ T細胞之粒腺體功能以及細胞激素的表現量……………………………………………………………………..……20 4.阻斷共抑制性受體訊號回復HBV慢性感染所誘發之T細胞耗竭之粒線體功能失調……………………………….……………………………….21 結論…………………………………………………………………………………..23 Figures………………………………………………………………………………..24 | |
dc.language.iso | zh-TW | |
dc.title | 慢性B型肝炎小鼠動物模式共抑制性受體所誘發CD8 + T細胞耗竭之免疫代謝功能失調之研究 | zh_TW |
dc.title | Study of immunometabolism dysregulation of co-inhibitory receptors induced T cells exhaustion in chronic HBV mouse model | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱清良,楊宏志,鄭世進 | |
dc.subject.keyword | B型肝炎,T細胞耗竭,粒線體,共抑制受體,抗氧化劑, | zh_TW |
dc.subject.keyword | Hepatitis B,T cell exhaustion,Mitochondria,Co-inhibitory receptors,Antioxidant, | en |
dc.relation.page | 39 | |
dc.identifier.doi | 10.6342/NTU201802733 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 2.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。