請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74652
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張恆華 | |
dc.contributor.author | Yu-Chih Chen | en |
dc.contributor.author | 陳昱芝 | zh_TW |
dc.date.accessioned | 2021-06-17T08:48:01Z | - |
dc.date.available | 2019-08-13 | |
dc.date.copyright | 2019-08-13 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-05 | |
dc.identifier.citation | [1] 衛生福利部統計處. (2017). 106年國人死因統計結果. Available: https://www.mohw.gov.tw/cp-16-41794-1.html
[2] 新光醫院腦血管檢查中心. 腦血管儀器設備介紹. Available: https://www.skh.org.tw/skh/695bf03b15.html [3] 吳振豪, 陳啟昌, and 李三剛. (2003). 急性缺血性腦中風的診斷. Available: http://homepage.vghtpe.gov.tw/~clinmed/abst92/abst9207p069.htm [4] 陳凱峰, '擴散張量影像Diffusion Tensor Imaging(DTI)於腦中風的應用,' 台灣腦中風學會, vol. 第二十一卷第一期, 2014. [5] 徐偉成. (2018). 以人類基因重組顆粒球聚落刺激因子(G-CSF)治療急性缺血性腦中風病人. Available: http://www.stroke.org.tw/GoWeb2/include/index.php?Page=5-1&paper02=14768858615bc96826bfeb7 [6] P. Kalavathi and V. B. S. Prasath, 'Methods on Skull Stripping of MRI Head Scan Images-a Review,' (in eng), Journal of digital imaging, vol. 29, no. 3, pp. 365-379, 2016. [7] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, 'Magnetic resonance image tissue classification using a partial volume model,' NeuroImage, vol. 13, no. 5, pp. 856-876, 2001. [8] M. Murugavel and J. M. Sullivan, 'Automatic cropping of MRI rat brain volumes using pulse coupled neural networks,' NeuroImage, vol. 45, no. 3, pp. 845-854, 2009. [9] J. Li, X. Liu, J. Zhuo, R. P. Gullapalli, and J. M. Zara, 'An automatic rat brain extraction method based on a deformable surface model,' Journal of neuroscience methods, vol. 218, no. 1, pp. 72-82, 2013. [10] K. Somasundaram and P. Kalavathi, 'Skull stripping of MRI head scans based on chan-vese active contour model,' International Journal of Knowledge Management vol. 3, no. 1, pp. 7-14, 2011. [11] I. A. Mulder et al., 'Automated Ischemic Lesion Segmentation in MRI Mouse Brain Data after Transient Middle Cerebral Artery Occlusion,' (in eng), Frontiers in neuroinformatics, vol. 11, pp. 3-3, 2017. [12] T. F. Chan and L. A. Vese, 'Active contours without edges,' IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266-277, 2001. [13] L. Liang, K. Rehm, R. P. Woods, and D. A. Rottenberg, 'Automatic segmentation of left and right cerebral hemispheres from MRI brain volumes using the graph cuts algorithm,' NeuroImage, vol. 34, no. 3, pp. 1160-1170, 2007. [14] G. Wagenknecht, H.-J. Kaiser, O. Sabri, and U. Buell, Automatic segmentation of brain hemispheres by midplane detection in class images (Medical Imaging 2000). SPIE, 2000. [15] P. Kalavathi and V. B. Surya Prasath, 'Automatic segmentation of cerebral hemispheres in MR human head scans,' International Joural of Imaging Systems and Technology, vol. 26, no. 1, pp. 15-23, 2016. [16] C.-H. Choi et al., 'A novel voxel-wise lesion segmentation technique on 3.0-T diffusion MRI of hyperacute focal cerebral ischemia at 1 h after permanent MCAO in rats,' Journal of Cerebral Blood Flow & Metabolism, vol. 38, no. 8, pp. 1371-1383, 2018. [17] J. Weinman, G. Bissias, J. Horowitz, E. Riseman, and A. Hanson, 'Nonlinear diffusion scale-space and fast marching level sets for segmentation of MR imagery and volume estimation of stroke lesions,' in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2003, pp. 496-504: Springer. [18] B. Stein, D. Lisin, J. Horowitz, E. Riseman, and G. Whitten, 'Statistical and deformable model approaches to the segmentation of MR imagery and volume estimation of stroke lesions,' in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2001, pp. 829-836: Springer. [19] W. Charoensuk, N. Covavisaruch, S. Lerdlum, and Y. Likitjaroen, 'Acute stroke brain infarct segmentation in DWI images,' International Journal of Pharma Medicine and Biological Sciences, vol. 4, no. 2, p. 115, 2015. [20] R. R. Edelman and S. Warach, 'Magnetic resonance imaging,' New England Journal of Medicine, vol. 328, no. 11, pp. 785-791, 1993. [21] A. Rodriguez, 'Principles of magnetic resonance imaging,' Revista mexicana de física, vol. 50, no. 3, pp. 272-286, 2004. [22] P. R. Schloerb, B. J. Friis-Hansen, I. S. Edelman, A. K. Solomon, and F. D. Moore, 'The measurement of total body water in the human subject by deuterium oxide dilution; with a consideration of the dynamics of deuterium distribution,' The Journal of clinical investigation, vol. 29, no. 10, pp. 1296-1310, 1950. [23] S. A. A. R. Kelly-Herard. More than X-Rays. Available: https://www.scott.af.mil/News/Article-Display/Article/160656/more-than-x-rays/ [24] W.-R. Schabitz and M. Fisher, 'Diffusion weighted imaging for acute cerebral infarction,' Neurological research, vol. 17, no. 4, pp. 270-274, 1995. [25] T. McInerney and D. Terzopoulos, 'Deformable models in medical image analysis: a survey,' Medical Image Analysis, vol. 1, no. 2, pp. 91-108, 1996. [26] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Prentice-Hall, Inc., 2006. [27] J. M. Prewitt, 'Object enhancement and extraction,' Picture processing and Psychopictorics, vol. 10, no. 1, pp. 15-19, 1970. [28] D. J. Devappa, S. Kumar, and D. S. Murty, 'Medical Image Segmentation Algorithms using Deformable Models: A Review,' IETE Technical Review, vol. 28, p. 248, 2011. [29] M. Kass, A. Witkin, and D. Terzopoulos, 'Snakes: Active contour models,' International Journal of Computer Vision, vol. 1, no. 4, pp. 321-331, 1988. [30] V. Caselles, F. Catté, T. Coll, and F. Dibos, 'A geometric model for active contours in image processing,' Numerische Mathematik, journal article vol. 66, no. 1, pp. 1-31, December 01 1993. [31] S. Osher and J. A. Sethian, 'Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,' Journal of Computational Physics, vol. 79, no. 1, pp. 12-49, 1988. [32] V. Caselles, R. Kimmel, and G. Sapiro, 'Geodesic Active Contours,' International Journal of Computer Vision, journal article vol. 22, no. 1, pp. 61-79, 1997. [33] W. Huang, J. Zhang, Z. Lin, S. Huang, Y. Duan, and Z. Lu, 'Template based rodent brain extraction and atlas mapping,' in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 4063-4066. [34] A. W. Toga and P. M. Thompson, 'Mapping brain asymmetry,' Nature Reviews Neuroscience, vol. 4, no. 1, p. 37, 2003. [35] B. Kolb, R. J. Sutherland, A. J. Nonneman, and I. Q. Whishaw, 'Asymmetry in the cerebral hemispheres of the rat, mouse, rabbit, and cat: The right hemisphere is larger,' Experimental Neurology, vol. 78, no. 2, pp. 348-359, 1982. [36] S.-J. Yeh, S.-C. Tang, L.-K. Tsai, J.-S. Jeng, C.-L. Chen, and S.-T. Hsieh, 'Neuroanatomy- and Pathology-Based Functional Examinations of Experimental Stroke in Rats: Development and Validation of a New Behavioral Scoring System,' (in English), Frontiers in Behavioral Neuroscience, Original Research vol. 12, no. 316, 2018-December-18 2018. [37] N. Otsu, 'A Threshold Selection Method from Gray-Level Histograms,' IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979. [38] J. Mille, 'Narrow band region-based active contours and surfaces for 2D and 3D segmentation,' Computer Vision and Image Understanding, vol. 113, no. 9, pp. 946-965, 2009. [39] H.-H. Chang, A. H. Zhuang, D. J. Valentino, and W.-C. Chu, 'Performance measure characterization for evaluating neuroimage segmentation algorithms,' NeuroImage, vol. 47, no. 1, pp. 122-135, 2009. [40] K. Zuiderveld, 'Contrast limited adaptive histogram equalization,' in Graphics gems IV, P. Heckbert, Ed.: Academic Press Professional, Inc., 1994, pp. 474-485. [41] D. G. Altman and J. M. Bland, 'Diagnostic tests 1: Sensitivity and specificity,' BMJ (Clinical research ed.), vol. 308, no. 6943, pp. 1552-1552, 1994. [42] L. R. Dice, 'Measures of the Amount of Ecologic Association Between Species,' Ecology, vol. 26, no. 3, pp. 297-302, 1945. [43] P. Jaccard, 'The distribution of the flora in the alpine zone.,' New phytologist, vol. 11, no. 2, pp. 37-50, 1912. [44] S. M. Smith, 'Fast robust automated brain extraction,' Human brain mapping, vol. 17, no. 3, pp. 143-155, 2002. [45] A. H. Zhuang, D. J. Valentino, and A. W. Toga, 'Skull-stripping magnetic resonance brain images using a model-based level set,' NeuroImage, vol. 32, no. 1, pp. 79-92, 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74652 | - |
dc.description.abstract | 腦血管疾病是國內十大死因的第四名,臨床上,大多數患者中風類型為缺血性中風。為了診斷此疾病,臨床前實驗多半使用嚙齒動物來做研究,醫生可藉由磁振造影偵測其腦梗塞區域並進行診斷,利用醫學影像分割提取大腦區域與缺血型中風區域。然而手動分割費時費力,因此本篇論文以大鼠作為實驗動物,使用其影像來開發一自動化演算法,以利醫生進行診斷和研究。
本論文的演算法分為三部分,首先對原始腦部磁振影像進行大腦擷取,再將其分為左右腦半球,藉由重疊左右腦半球找出異常區域,將其判定為中風區域。大腦擷取的部分是採用基於無邊緣主動輪廓模型的方法,加入了窄帶區域演算法的概念,並在迭代過程中對時間步長進行調整,使計算效率提升、準確率上升。此外,因為此模型對初始位置非常敏感,本演算法以Otsu法對原始影像進行二值化後得到一初始輪廓,將其和強化過的影像用改進的模型做處理,即可得到分割結果,並將此結果當作下一張切片的初始輪廓,大大減少了迭代次數。 左右腦半球分割的部分是接續大腦擷取,得到一乾淨的腦部影像後,再來利用邊緣偵測、梯度運算找出中線上的特徵點,用形態學將其連線產生腦部中線作為分割線,進行左右腦半球的分割。 中風區域的分割同樣是基於可變形模型的方法,將缺血型腦中風區域從老鼠大腦分割出來。基於正常和病變區域強度有差異的假設,藉由計算左右腦半球重疊區域的差值求得異常區域,並將其判定為中風區域。 本篇研究使用了34隻老鼠腦部中風影像,結果顯示本研究演算法可以準確分割老鼠大腦(Dice為96.12±0.75%,Jaccard為92.52±1.4%)和左右腦半球(右腦的Dice為97.99±0.94%,右腦的Jaccard為96.06±1.79%,左腦的Dice為97.82±1.18%,左腦的Jaccard為95.73±2.21%),對中風區域的分割也有良好的表現(Dice為77.14±21.89%,Jaccard為62.79±21.91%)。 | zh_TW |
dc.description.abstract | Cerebrovascular disease is the fourth domestic cause of death. Most of the stroke patients have a ischemic stroke. In order to study this disease, rodents are usually used in preclinical experiments. By magnetic resonance imaging, doctors can detect and diagnose the cerebral infarct area, and extract brain regions and ischemic stroke regions by using image segmentation tools. However, manual segmentation is time-consuming and laborious. An automated algorithm is developed in this thesis using rats as experimental animals to help doctors conduct diagnosis and investigation.
The algorithm of this thesis is divided into three parts. Firstly, the brain is extracted from surrounding region (skull and non-brain tissues), and then this region is divided into left and right brain cerebral hemispheres. Finally, the abnormal area is found by overlapping the left and right brain hemispheres, which can be determined as a stroke area. The algorithm of the brain segmentation is based on the active contour model without edges, including the concept of the narrow band, and its time step is adjusted in the iterative process, so that the calculation efficiency is improved and the accuracy is increased. Moreover, because of its sensitivity of the initial contour, the Otsu method is used to binarize the original image to obtain a rough mask. Then, the mask and the enhanced-contrast image are processed by the improved model to produce segmentation outcome which is treated as the Initial Contour of the next slice, thus greatly reducing the number of iterations. After brain extraction, to segment the left and right cerebral hemispheres, a clean brain image is processed by edge detection and gradient operations to find the feature points around the midline. Then, morphology methods are used to connect the brain midline, which performs the division of the left and right brain hemispheres. The segmentation of the stroke region is also based on a deformable model that separates the ischemic brain stroke region from the rat brain. Based on the assumption of the different intensity of the normal and the lesion regions, the abnormal region can be obtained by calculating the difference between the left and right hemisphere overlapping regions, which is determined as the stroke region. In this study, we used 34 rat brain stroke images. The results showed that the algorithm can accurately segment the rat brain (Dice = 96.12 ± 0.75%, Jaccard = 92.52 ± 1.4%) and the left and right brain hemispheres (Dice of right brain = 97.99 ± 0.94%, Jaccard of the right brain = 96.06 ± 1.79%, Dice of the left brain = 97.82 ± 1.18%, Jaccard of the left brain = 95.73 ± 2.21%). The segmentation of the stroke regions also had good performance (Dice = 77.14 ± 21.89%, Jaccard = 62.79 ± 21.91%). | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:48:01Z (GMT). No. of bitstreams: 1 ntu-108-R06525089-1.pdf: 15770357 bytes, checksum: a91d49ccd0bb5c4420e3213e3d3be9fb (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 謝誌 i
中文摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 x 第 1 章 前言 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 章節架構 4 1.4 專有名詞中英對照與符號說明 4 1.4.1 專有名詞中英對照 4 1.4.2 符號、參數及變數說明表 8 第 2 章 文獻探討 11 2.1 擴散權重磁振造影介紹 11 2.2 腦部分割演算法 12 2.2.1 形態學 12 2.2.2 強度 13 2.2.3 可變形模型 16 2.3 老鼠腦部影像分割 19 2.4 中風區域分割演算法 20 2.5 左右腦半球分割演算法 21 第 3 章 研究方法 22 3.1 資料集 23 3.2 方法與流程 23 3.2.1 自動化大腦擷取 23 3.2.2 自動化左右腦半球分割 30 3.2.3 自動化分割缺血型腦中風 32 3.3 黃金標準分割區域取得 33 第 4 章 實驗結果及討論 35 4.1 實驗說明 35 4.1.1 實驗環境 36 4.1.2 資料集 36 4.1.3 評估標準 38 4.2 大腦分割結果 39 4.2.1 改進的可變形模型結果評估 39 4.2.2 與其他方法比較 48 4.3 左右腦半球分割結果 51 4.3.1 形態學演算法結果評估 51 4.3.2 與其他方法比較 57 4.4 缺血型中風區域分割結果 62 4.4.1 可變形模型結果評估 62 4.4.2 與其他方法比較 69 4.5 演算法時間評估 73 第 5 章 結論及未來展望 74 5.1 結論 74 5.2 未來展望 75 參考文獻 76 | |
dc.language.iso | zh-TW | |
dc.title | 以可變形模型為基礎的老鼠腦部磁振影像中風區域自動分割技術 | zh_TW |
dc.title | Automated Ischemic Stroke Segmentation in Rat Brain MR Images Based on Deformable Models | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張瑞益,江明彰,葉馨喬 | |
dc.subject.keyword | 磁振影像,缺血型中風,大腦擷取,左右腦半球分割,中風區域分割,可變形模型,窄帶區域, | zh_TW |
dc.subject.keyword | Magnetic resonance imaging,ischemic stroke,brain extraction (skull stripping),left and right cerebral hemisphere segmentation,infarct segmentation,deformable models,narrow band, | en |
dc.relation.page | 78 | |
dc.identifier.doi | 10.6342/NTU201902395 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 15.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。