Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74650
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳鴻基(Houn-Gee Chen)
dc.contributor.authorChun-Kai Changen
dc.contributor.author張浚凱zh_TW
dc.date.accessioned2021-06-17T08:47:54Z-
dc.date.available2021-08-07
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citation袁方. (2002). 社會研究方法. 台北: 五南.
黃嬿. (2018). 【CES 2019 台灣新創團隊】台大清大開發 AI 血液檢測工具,助血癌判讀精準度躍升. 科技新報.
張煥禎. (1999). 醫療行銷管理學. 台北: 偉華出版.
張殷綺. (2017). 預測性分析可大幅降低病患跌倒風險. DIGITIMES.
陳怡蓁. (2018). 從全球展望臺灣人工智慧健康醫藥領域之開發. 經濟部技術處.
賴品如. (2018). 中國醫藥大學附設醫院率先亞洲部署NVIDIA DGX-2. DIGITIMES.
黃勢璋. (2018). 我國發展AI+健康醫療產業之策略研析. 經濟前瞻, 111-117.
陳昇瑋. (2018). 產業AI化非做不可. 經濟日報.
謝耀方. (2018). 2018智慧醫療論壇專輯:台灣智慧醫療產業發展現況分析. DIGITIMES.
郭宣含. (2019). 阿公病危 醫生透過機器人視訊宣布「你快死了」. 聯合報.
王若樸. (2019). 【醫療影像AI實例:臺北榮總】AI只花30秒就能自動從數百張MRI影像找出腫瘤!準確率達95%. iThome.
謝明珊. (2019). CherryHome以AI預測老年人跌倒機率 改善高齡照護. DIGITIMES.
王柏豪, & 許敏. (2018). 大藥廠的 「AI+新藥」大夢. 環球生技月刊, 57.
文崇一, & 楊國樞. (2000). 社會及行為科學研究法. 台北: 東華.
楊振甫, & 黃則佳. (2011). 打開服務設計的秘密. 台北: 台灣創意.
余峻瑜, & 鄭佩怡. (2016). 服務創新與設計之健康照護服務設計規劃模式:以遠距照護為例. 臺大管理論叢, 27(1), 225-254.
財團法人醫院評鑑暨醫療品質策進會. (2005). 台灣醫療品質指標計畫監測資料.
Apker, J., Propp, K. M., & Ford, W. S. (2005). Negotiating status and identity tensions in healthcare team interactions: An exploration of nurse role dialectics. Journal of Applied Communication Research, 33(2), 93-115.
Arieno, A., Chan, A., & Destounis, S. V. (2019). A Review of the Role of Augmented Intelligence in Breast Imaging: From Automated Breast Density Assessment to Risk Stratification. American Journal of Roentgenology, 212(2), 259-270.
BERG. (2017). BERG Enters Into an Agreement With Sanofi Pasteur to Identify Biomarkers of Flu Vaccine Performance.
Berry, L. L., & Bendapudi, N. (2007). Health care: A fertile field for service research. Journal of Service Research, 10(2), 111-122.
CB Insights. (2016). AI In Healthcare Heatmap: From Diagnostics To Drug Discovery Startups, The Category Heats Up.
Cook, L. S., Bowen, D. E., Chase, R. B., Dasu, S., Stewart, D. M., & Tansik, D. A. (2002). Human issues in service design. Journal of Operations Management, 20(2), 159-174.
Davenport, T. H., & Glover, W. J. (2018). Artificial Intelligence and the Augmentation of Health Care Decision-Making. NEJM Catalyst.
Dellande, S., Gilly, M. C., & Graham, J. L. (2004). Gaining compliance and losing weight: The role of the service provider in health care services. Journal of Marketing, 68(3), 78-91.
Deloitte. (2019). 2019醫療照護產業展望.
Design Council. (2015). Design methods for developing services.
DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, 47, 20-33.
Gibbons, S. (2017). Service Design 101. Nielsen Norman Group.
HSBC. (2014). Expat Explorer Report 2014.
Idrus, A. A. (2017). GlaxoSmithKline taps Baltimore’s Insilico for AI-based drug discovery. FierceBiotech.
Khodadad, I., Shafiee, J., Wong, A., Kazemzadeh, F., & Arlette, J. (2018). Deep Tissue Sequencing Using Hypodermoscopy and Augmented Intelligence to Analyze Atypical Pigmented Lesions. Journal of Cutaneous Medicine and Surgery, 22(6), 583-590.
Kuo, E. (2017). AI in Healthcare: Industry Landscape. Techburst.io.
LaRosa, E., & Danks, D. (2018). Impacts on Trust of Healthcare AI. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, (pp. 210-215).
Liew, C. (2018). The future of radiology augmented with Artificial Intelligence: A strategy for success. European Journal of Radiology, 102, 152-156.
Livework. (2017). Service Design in Healthcare: our top 5 takeaways from the PULS conference.
Lo, Y.-C., Rensi, S. E., Torng, W., & Altman, R. B. (2018). Machine learning in chemoinformatics and drug discovery. Drug Discovery Today, 23(8), 1538-1546.
Meyer, S. M., & Collier, D. A. (2001). An empirical test of the causal relationships in the Baldrige health care pilot criteria. Journal of Operations Management, 19(4), 403-426.
Pfizer. (2016). IBM and Pfizer to Accelerate Immuno-Oncology Research with Watson for Drug Discovery.
Porter, M. E. (1998). On Competition. Boston, MA: Harvard Business School Press.
Porter, M. E. (2010). What is value in health care? The New England Journal of Medicine, 363(26), 2477-2481.
Tractica. (2017). Healthcare Artificial Intelligence Software, Hardware, and Services Market to Reach $19.3 Billion Worldwide by 2025.
Tran, V.-T., Riveros, C., & Ravaud, P. (2019). Patients’ views of wearable devices and AI in healthcare: findings from the ComPaRe e-cohort. npj Digital Medicine, 2, Article number: 53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74650-
dc.description.abstract隨著全球人口數持續成長,且人口結構高齡化,醫療照護服務的成本與效率的相關議題持續受到關注。由於病患對於健康、醫療資訊的接收管道越來越多且暢通,病患的自主意識抬頭,也促使醫療照護服務轉為以「病患為中心」的模式。本研究即根據「以病患為中心」為出發點,探討在人工智慧導入醫療照護產業下,對於服務流程的影響與轉變,輔以服務設計的架構切入AI智慧醫療發展下,對於醫療照護流程中各利害關係人的影響。
本研究以過去文獻所提出的健康照護服務設計規劃模式作為切入的基本架構,探討AI技術導入之後,會如何影響其中的投入、服務傳遞系統與產出三個階段。在透過與醫療照護服務流程中的利害關係人—服務使用者(病患)與服務提供者(醫師)針對這些議題進行結構式的深度訪談後,將受訪者針對相關議題的想法與建議進一步歸納、分析並收斂至到本研究的基本架構上。歸納分析的結果顯示,AI導入可使部分常規工作與病患分流,將有助於有限的醫護的人力做最有效的投入,投入面向則會轉而著重於醫病互動與信任關係,因為AI智慧醫療下,醫護人員與病患的互動關係是更需要被強調的服務核心,因此,AI智慧醫療的服務設計不應以完全取代醫護專業為核心目的,而是讓醫護專業輔以AI化。此外,是否納入健保與知覺到較高的效益,是民眾認同AI醫療的關鍵。健保支付制度與現行法規則是台灣目前導入AI智慧醫療的主要限制。
雖然國外已開始有研究從病患的觀點探討AI智慧醫療的效益與風險,但國內相關的研究論述目前仍較少。然而,要形塑健全的醫療照護服務系統,需要有更多的研究從病患端的角度出發,才能使科技的導入更符合病患的需求。
zh_TW
dc.description.abstractAs the global population continues to grow and the population structure is aging, issues related to the cost and efficiency of healthcare services continue to draw lots of attention. Patients’ unimpeded receiving of medical and health information and sense of autonomy has led to the transformation of healthcare services into a patient-centered model. Based on the patient-centered service model, this study investigated the impact of application of artificial intelligence (AI) on service process in healthcare industry. With the framework of service design, changes to stakeholders (patients and clinicians) during the development of AI in healthcare were discussed.
Based on the healthcare service design planning model proposed by the previous study, we focused on how the three phases of input, service delivery system and output will be affected after the introduction of AI technologies. Stakeholders’ consideration and recommendation on these issues were collected through structured in-depth interviews. The analysis showed that the introduction of AI was believed to help share the loading of clinical routine work and patient care, which would result in more effective deployments and inputs of limited medical staff. Since patient-clinician interactions were still considered as the core of healthcare service, the released labor inputs should be transferred to human-human interactions and relationships. Therefore, the role of AI in the healthcare service design should be assistive instead of completely replacing medical professionals. In addition, patients’ recognition to the use of AI were largely determined by whether higher value was perceived and whether AI-based services were included in health insurance. The health insurance system and the regulations related to medical care and patient data were considered as main restrictions on the introduction of AI in healthcare services in Taiwan.
Studies on the benefits and risks of AI in healthcare from patients’ views have been published in other countries, whereas related research in Taiwan is still rare. We believe that accounting for patients’ perspectives will make the introduction of AI technologies more in line with patients’ real needs.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:47:54Z (GMT). No. of bitstreams: 1
ntu-108-R06741077-1.pdf: 3169037 bytes, checksum: 03f00b3379612422b5845d76bf8350ee (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
英文摘要 iii
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究架構 3
第二章 文獻探討 5
2.1 醫療照護的服務流程 5
2.1.1 醫療照護服務的三大區塊 5
2.1.2 當今醫療照護產業的三大痛點 6
2.2 智慧醫療:AI導入醫療照護產業 12
2.2.1 AI智慧醫療發展現況 12
2.2.2 AI應對醫療照護三大痛點 19
2.3醫療照護產業中的服務設計 24
2.3.1 服務設計的要素與流程 24
2.3.2 服務設計的工具 27
2.3.3 醫療照護中的服務設計 29
第三章 研究架構與方法 35
3.1 研究架構 35
3.2 研究方法 38
3.2.1 深度訪談:結構式訪談 38
3.2.2 訪談對象 38
3.2.3 訪談題目設計 41
第四章 研究分析 44
4.1 醫療照護服務使用者之訪談歸納分析 44
4.1.1 受訪者上一次接受或接觸醫療照護服務的經驗 44
4.1.2 受訪對於AI導入醫療照護服務流程的認知 47
4.1.3 受訪者對於AI在醫療照護服務中價值創造的期待 49
4.2 醫師之訪談歸納分析 50
4.2.1 受訪對於AI導入醫療照護服務流程的認知 50
4.2.2 受訪者對於AI在醫療照護服務中價值創造的期待 51
第五章 研究結論與建議 53
5.1 研究結論 53
5.2 研究建議 58
5.3 研究限制 58
參考文獻 60
附錄一 使用者A訪談紀錄 63
附錄二 使用者B訪談紀錄 65
附錄三 使用者C訪談紀錄 68
附錄四 醫師A訪談紀錄 72
附錄五 醫師B訪談紀錄 77
dc.language.isozh-TW
dc.subjectAI智慧醫療zh_TW
dc.subject人工智慧zh_TW
dc.subject服務設計zh_TW
dc.subjectArtificial intelligenceen
dc.subjectAI in healthcareen
dc.subjectService designen
dc.title人工智慧技術導入對醫療照護服務設計的影響zh_TW
dc.titleStudy of impact of artificial intelligence on healthcare service designen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余峻瑜(Jiun-Yu Yu),朱宇倩(Yu-Qian Zhu)
dc.subject.keyword人工智慧,AI智慧醫療,服務設計,zh_TW
dc.subject.keywordArtificial intelligence,AI in healthcare,Service design,en
dc.relation.page81
dc.identifier.doi10.6342/NTU201902394
dc.rights.note有償授權
dc.date.accepted2019-08-06
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept商學研究所zh_TW
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved