請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74636
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 錢義隆(I-Lung Chien) | |
dc.contributor.author | Kai-Yang Lin | en |
dc.contributor.author | 林楷揚 | zh_TW |
dc.date.accessioned | 2021-06-17T08:47:05Z | - |
dc.date.available | 2024-08-19 | |
dc.date.copyright | 2019-08-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-05 | |
dc.identifier.citation | 1. Mahdi, T.; Ahmad, A.; Nasef, M. M.; Ripin, A., State-of-the-Art Technologies for Separation of Azeotropic Mixtures. Separation & Purification Reviews 2015, 44, 308-330.
2. Jana, A. K., Heat integrated distillation operation. Applied Energy 2010, 87, 1477-1494. 3. Liu, Z.; Xu, D.; Ma, Y.; Zhu, J.; Gao, J.; Shi, P.; Ma, X.; Wang, Y., Liquid-liquid equilibrium determination and thermodynamics modeling for extraction of isopropanol from its aqueous solution. Fluid Phase Equilibria 2018, 458, 40-46. 4. Yamashita, K.; Tanaka, T.; Hayashi, M., Use of isopropyl alcohol as a solvent in Ti(O-i-Pr)4-catalyzed Knöevenagel reactions. Tetrahedron 2005, 61, 7981-7985. 5. Arifin, S.; Chien, I. L., Design and Control of an Isopropyl Alcohol Dehydration Process via Extractive Distillation Using Dimethyl Sulfoxide as an Entrainer. Industrial & Engineering Chemistry Research 2008, 47, 790-803. 6. Zhang, Y.; Liu, K.; Wang, Z.; Gao, J.; Zhang, L.; Xu, D.; Wang, Y., Vapour–liquid equilibrium and extractive distillation for separation of azeotrope isopropyl alcohol and diisopropyl ether. The Journal of Chemical Thermodynamics 2019, 131, 294-302. 7. Luo, H.; Liang, K.; Li, W.; Li, Y.; Xia, M.; Xu, C., Comparison of Pressure-Swing Distillation and Extractive Distillation Methods for Isopropyl Alcohol/Diisopropyl Ether Separation. Industrial & Engineering Chemistry Research 2014, 53, 15167-15182. 8. Lladosa, E.; Montón, J. B.; Burguet, M. C.; Muñoz, R., Effect of pressure and the capability of 2-methoxyethanol as a solvent in the behaviour of a diisopropyl ether–isopropyl alcohol azeotropic mixture. Fluid Phase Equilibria 2007, 262, 271-279. 9. Chen, H.; Chen, M.; Chien, I. In Using [EMIM][OAC] as entrainer for isopropyl alcohol dehydration via extractive distillation, 2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP), 28-31 May 2017, 2017; 2017; pp 257-262. 10. Mujiburohman, M.; Sediawan, W. B.; Sulistyo, H., A preliminary study: Distillation of isopropanol–water mixture using fixed adsorptive distillation method. Separation and Purification Technology 2006, 48, 85-92. 11. Zhigang, L.; Jinchang, Z.; Biaohua, C., Separation of aqueous isopropanol by reactive extractive distillation. Journal of Chemical Technology & Biotechnology 2002, 77, 1251-1254. 12. Bence, N.; Laszlo, H.; Peter, L., Comparison of batch heteroazeotropic distillation operational strategies for the dehydration of isopropanol. Chemical Engineering Research and Design 2019, 146, 486-498. 13. Xia, H.; Ye, Q.; Feng, S.; Li, R.; Suo, X., A novel energy-saving pressure swing distillation process based on self-heat recuperation technology. Energy 2017, 141, 770-781. 14. Jiang, A. G.; Zhang, J. W.; Xin, Y. N.; Yang, J. L., Simulation study on separation process for wastewater containing isopropanol and isopropyl ether. Xiandai Huagong/Modern Chemical Industry 2017, 37, 187-190 and 192. 15. Guang, C.; Shi, X.; Zhang, Z.; Wang, C.; Wang, C.; Gao, J., Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures. Chemical Engineering Research and Design 2019, 143, 249-260. 16. Mandal, S.; Pangarkar, V. G., Effect of membrane morphology in pervaporative separation of isopropyl alcohol–aromatic mixtures— a thermodynamic approach to membrane selection. Journal of Applied Polymer Science 2003, 90, 3912-3921. 17. Liu, J.; Ma, Y.; Hu, K.; He, H.; Shao, G., Pervaporation separation of isopropanol/benzene mixtures using inorganic–organic hybrid membranes. Journal of Applied Polymer Science 2010, 117, 2464-2471. 18. Ma, S.; Shang, X.; Zhu, M.; Li, J.; Sun, L., Design, optimization and control of extractive distillation for the separation of isopropanol-water using ionic liquids. Separation and Purification Technology 2019, 209, 833-850. 19. Cui, Y.; Shi, X.; Guang, C.; Zhang, Z.; Wang, C.; Wang, C., Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater. Process Safety and Environmental Protection 2019, 122, 1-12. 20. Luyben, W. L., Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers & Chemical Engineering 2013, 50, 1-7. 21. Luyben, W. L., Principles and case studies of simultaneous design. John Wiley & Sons: 2012. 22. Qin, J.; Ye, Q.; Xiong, X.; Li, N., Control of Benzene–Cyclohexane Separation System via Extractive Distillation Using Sulfolane as Entrainer. Industrial & Engineering Chemistry Research 2013, 52, 10754-10766. 23. Fan, Z.; Zhang, X.; Cai, W.; Wang, F., Design and Control of Extraction Distillation for Dehydration of Tetrahydrofuran. Chemical Engineering & Technology 2013, 36, 829-839. 24. Lumin, L.; Yangqin, T.; Lianjie, G.; Lanyi, S.; Yuanyu, T., Optimization and control of extractive distillation with heat integration for separating benzene/cyclohexane mixtures. China Petroleum Processing and Petrochemical Technology 2016, 18, 117-127. 25. Luo, B.; Feng, H.; Sun, D.; Zhong, X., Control of fully heat-integrated pressure swing distillation for separating isobutyl alcohol and isobutyl acetate. Chemical Engineering and Processing: Process Intensification 2016, 110, 9-20. 26. Zhang, Q.; Peng, J.; Zhang, K., Separation of an azeotropic mixture of dimethyl carbonate and methanol via partial heat integration pressure swing distillation. Asia-Pacific Journal of Chemical Engineering 2017, 12, 50-64. 27. Chen, Y.; Liu, C.; Geng, Z., Design and control of fully heat-integrated pressure swing distillation with a side withdrawal for separating the methanol/methyl acetate/acetaldehyde ternary mixture. Chemical Engineering and Processing - Process Intensification 2018, 123, 233-248. 28. Tyreus, B. D.; Luyben, W. L., Tuning PI controllers for integrator/dead time processes. Industrial & Engineering Chemistry Research 1992, 31, 2625-2628. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74636 | - |
dc.description.abstract | 本研究包含兩個混合物系統,主要探討如何利用三成分混合系統中,本身存在的液-液分相區來協助分離。
第一個系統為異丙醚、異丙醇與水的混合物之分離程序,利用液-液分相結合變壓蒸餾的方式,可使蒸餾邊界遠離進料點,大幅減少塔頂出料流量,使整個系統回流量變少,降低能耗。最後,低壓塔與高壓塔之間做部分熱整合後,所計算出的年度總成本相比使用傳統變壓蒸餾的方式節省 38.6%。本文也討論此熱整合設計流程之動態模擬與控制,在考慮開環路與閉環路敏感度測試後,使用單點板溫控制策略與壓力補償溫度控制策略來做控制,最後進行閉環干擾測試,以確認在干擾之下,整個系統仍能維持高純度之產品規格。 第二個系統為苯、異丙醇與水的混合物之分離程序,此系統包含三個雙成分共沸物及一個三成分共沸物,且蒸餾邊界將三成分相圖分成三個區域。由於進料組成位於液-液分相區中,因此新鮮進料直接進入一分相槽後,可得水相與有機相,兩相位在不同蒸餾區域,分別進入一蒸餾塔後可於塔底得到產物,透過調整蒸餾塔的回流比,使兩塔塔頂出料混合後可位在第三種產物所在的蒸餾區,此混合流進入一蒸餾塔後可於塔底獲得第三種產物,塔頂出料組成則接近三成分共沸物組成,回流至前面與新鮮進料混合後一起進入分相槽。最後,進行部分熱整合並計算其 TAC,結果與傳統變壓蒸餾相比可節省 61.4% 的成本。 藉由討論上述兩個分離設計流程,能發現相比傳統變壓蒸餾,本研究所使用的方法可以大幅降低系統內部整體的回流量來達到減少操作成本的效果。 | zh_TW |
dc.description.abstract | This work consists of two mixture systems and mainly discusses how to use the existing liquid-liquid phase separation region in the three-component mixture system to assist the separation.
The first system is the separation process for the mixture of isopropyl ether, isopropyl alcohol and water. By using liquid-liquid phase separation combined with pressure swing distillation, the distillation boundary can be kept away from the operating point and the distillate flow rate of the column is greatly reduced, so that the recirculation in the system is reduced and the energy consumption is also reduced. Finally, after partial heat integration being performed between the low pressure column and the high pressure, the calculated annual total cost is reduced 38.6% compared to the conventional pressure swing distillation. This study also discusses the dynamic simulation and control of this heat-integrated design process. After considering the open loop and closed loop sensitivity test, the single point temperature control and the pressure compensation temperature control are used, and finally the closed-loop disturbance test is performed to confirm that the system can still maintain high purity product specifications under disturbance. The second system is a separation process for a mixture of benzene, isopropanol and water. The system contains three two-component azeotropes and one three-component azeotrope, and the distillation boundary divides the three-component phase diagram into three regions. Since the feed composition is located in the liquid-liquid phase separation zone, the fresh feed directly enters a decanter, and the aqueous phase and the organic phase are obtained. The two phases, which are in different distillation area, enter a distillation column respectively and the product can be get from the bottom. By adjusting the reflux ratio of the distillation column, the mixture of the two column distillate can be located in the distillation zone where the third product is located. After the mixed stream enters a distillation column, the third product can be obtained at the bottom of the column. The distillate composition is close to the three-component azeotrope composition. The distillate is recycled back to mix with the fresh feed and then goes into a decanter. Finally, partial heat integration is performed and then TAC is calculated. The result shows 61.4% savings in cost compared to conventional pressure swing distillation. By discussing the above two separation design process, it can be found that the method used in this study can greatly reduce the overall recirculation of the system to reduce the operating cost compared with the conventional pressure swing distillation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:47:05Z (GMT). No. of bitstreams: 1 ntu-108-R06524016-1.pdf: 4191129 bytes, checksum: f6ef1b246ebbffc93d07feedc7940023 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 III
摘要 V Abstract VII 目錄 IX 圖目錄 XI 表目錄 XIII 1. 緒論 1 1.1. 前言 1 1.2. 文獻回顧 3 1.2.1. 異丙醚/異丙醇/水分離系統 3 1.2.2. 苯/異丙醇/水分離系統 7 1.3. 研究動機 10 1.4. 組織架構 11 2. 異丙醚/異丙醇/水分離系統 12 2.1. 前言 12 2.2. 熱力學模型 13 2.3. 液-液分相結合變壓蒸餾程序之設計 16 2.3.1. 液-液分相結合變壓蒸餾程序之概念設計 16 2.3.2. 液-液分相結合變壓蒸餾程序之最適化穩態設計 20 2.3.3. 熱整合之穩態設計 27 2.3.4. 結果與比較 29 3. 苯/異丙醇/水分離系統 31 3.1. 前言 31 3.2. 熱力學模型 32 3.3. 非勻相共沸蒸餾程序之設計 35 3.3.1. 非勻相共沸蒸餾程序之概念設計 35 3.3.2. 非勻相共沸蒸餾程序之最適化穩態設計 38 3.3.3. 熱整合之穩態設計 45 3.3.4. 結果與比較 47 4. 動態模擬與控制策略 49 4.1. 前言 49 4.2. 異丙醚/異丙醇/水分離系統 50 4.2.1. 儲量控制環路 50 4.2.2. 品質控制分析與策略 51 4.2.3. 單點板溫控制分析 54 4.2.4. 壓力補償溫度控制策略 61 4.2.5. 閉環干擾排除測試 65 5. 結論及未來工作 68 5.1. 異丙醚/異丙醇/水分離系統 68 5.2. 苯/異丙醇/水分離系統 69 參考文獻 70 附錄 年度總成本計算公式 75 | |
dc.language.iso | zh-TW | |
dc.title | 利用液-液分相輔助分離三成分共沸物之設計與控制 | zh_TW |
dc.title | Design and Control of Separation for Ternary Azeotropic Mixtures System Aided by Liquid-Liquid Separation | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳誠亮(Cheng-Liang Chen),吳哲夫(Jeffrey D. Ward),汪上曉(Shan-Hill Wong),鄭西顯(Shi-Shang Jang) | |
dc.subject.keyword | 程序設計與控制,三成分共沸混合物,液-液分相,熱整合,變壓蒸餾, | zh_TW |
dc.subject.keyword | process design and control,Three-component azeotrope mixtures,liquid-liquid phase separation,heat integration,pressure swing distillation, | en |
dc.relation.page | 78 | |
dc.identifier.doi | 10.6342/NTU201902609 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。