Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信希,陳昇瑋
dc.contributor.authorTsun-Hsien Tangen
dc.contributor.author湯忠憲zh_TW
dc.date.accessioned2021-06-17T08:46:43Z-
dc.date.available2024-08-13
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citationBahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. ArXiv Preprint ArXiv:1409.0473.
Bayer, I., He, X., Kanagal, B., & Rendle, S. (2017). A generic coordinate descent framework for learning from implicit feedback. Proceedings of the 26th International Conference on World Wide Web, 1341–1350. International World Wide Web Conferences Steering Committee.
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
Chang, C.-Y., Zhang, Y., Teng, Z., Bozanic, Z., & Ke, B. (2016). Measuring the information content of financial news. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 3216–3225.
Chen, C.-C., Huang, H.-H., & Chen, H.-H. (2018). NTUSD-Fin: A Market Sentiment Dictionary for Financial Social Media Data Applications. Proceedings of the 1st Financial Narrative Processing Workshop (FNP 2018).
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–794. ACM.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
Davis, A. K., Piger, J. M., & Sedor, L. M. (2012). Beyond the numbers: Measuring the information content of earnings press release language. Contemporary Accounting Research, 29(3), 845–868.
Ding, X., Zhang, Y., Liu, T., & Duan, J. (2014). Using structured events to predict stock price movement: An empirical investigation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1415–1425.
Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015). Deep learning for event-driven stock prediction. Ijcai, 2327–2333.
Ding, X., Zhang, Y., Liu, T., & Duan, J. (2016). Knowledge-driven event embedding for stock prediction. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2133–2142.
Fama, E. F., Fisher, L., Jensen, M. C., & Roll, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1), 1–21.
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5–6), 602–610.
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering. Proceedings of the 26th International Conference on World Wide Web, 173–182. International World Wide Web Conferences Steering Committee.
Hu, Z., Liu, W., Bian, J., Liu, X., & Liu, T.-Y. (2018). Listening to Chaotic Whispers: A Deep Learning Framework for News-oriented Stock Trend Prediction. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 261–269. https://doi.org/10.1145/3159652.3159690
Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. European Conference on Machine Learning, 137–142. Springer.
Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2017). Bag of Tricks for Efficient Text Classification. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, 427–431. Retrieved from http://aclweb.org/anthology/E17-2068
Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980.
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. ArXiv Preprint ArXiv:1312.6114.
Lee, H., Surdeanu, M., MacCartney, B., & Jurafsky, D. (2014). On the Importance of Text Analysis for Stock Price Prediction. LREC, 1170–1175.
Li, X., Xie, H., Chen, L., Wang, J., & Deng, X. (2014). News impact on stock price return via sentiment analysis. Knowledge-Based Systems, 69, 14–23.
Liu, Q., Cheng, X., Su, S., & Zhu, S. (2018). Hierarchical Complementary Attention Network for Predicting Stock Price Movements with News. Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 1603–1606. https://doi.org/10.1145/3269206.3269286
Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. The Journal of Finance, 66(1), 35–65.
McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2), 153–157.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. ArXiv Preprint ArXiv:1301.3781.
Pagolu, V. S., Reddy, K. N., Panda, G., & Majhi, B. (2016). Sentiment analysis of Twitter data for predicting stock market movements. Signal Processing, Communication, Power and Embedded System (SCOPES), 2016 International Conference On, 1345–1350. IEEE.
Ritchie, J. C. (1996). Fundamental analysis: a back-to-the-basics investment guide to selecting quality stocks. Irwin Professional Pub.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, 285–295. ACM.
Si, J., Mukherjee, A., Liu, B., Li, Q., Li, H., & Deng, X. (2013). Exploiting topic based twitter sentiment for stock prediction. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 2, 24–29.
Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of Finance, 62(3), 1139–1168.
Tsai, M.-F., & Wang, C.-J. (2017). On the risk prediction and analysis of soft information in finance reports. European Journal of Operational Research, 257(1), 243–250.
Van Der Maaten, L. (2014). Accelerating t-SNE Using Tree-based Algorithms. J. Mach. Learn. Res., 15(1), 3221–3245.
Xu, Y., & Cohen, S. B. (2018). Stock Movement Prediction from Tweets and Historical Prices. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1, 1970–1979.
Zhang, H., Shen, F., Liu, W., He, X., Luan, H., & Chua, T.-S. (2016). Discrete collaborative filtering. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, 325–334. ACM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74630-
dc.description.abstract大量網路新聞分析有利於股市趨勢的預測,先前的研究往往只考慮有提及公司或股票名稱的新聞作為分析的對象,但是並非每間公司每天都會被新聞報導。如果只考慮具有上述特徵的新聞,容易造成資料的稀疏。同時通過產業相關新聞的分析,做為財務決定之參考較符合真實人類的行為。因此,本研究將使用無明確提及公司名稱之新聞,即隱性相關新聞,來豐富預測模型訓練之資料來源。為能充分利用隱性相關新聞,本研究提出基於新聞篩選機制的深度神經網絡框架,該框架結合文件表徵學習和偕同過濾來捕捉新聞和股票之間的關係。本研究實驗於真實世界資料,並且與最先進的模型比較,實驗結果顯示有效性以及準確率都有提升。zh_TW
dc.description.abstractAnalyzing online news content benefits stock price trend prediction. Previous studies on news-oriented stock market prediction focus mainly on news with explicit stock mentions for a specific prediction target, and may suffer from data sparsity. As taking into consideration other related news - e.g., sector-related news - is a crucial part of real-world decision-making, we explore the use of news without explicit target mentions to enrich the information for the prediction model. We first conduct an empirical analysis on real-world news collected from a well-known financial website. To leverage implicit-related information, we devise a neural network framework that jointly learns with a news selection mechanism to extract implicit news from the chaotic daily news pool. The news distilling network (NDN), our proposed model, takes advantage of neural representation learning and collaborative filtering to capture the relationship between stocks and news. With NDN, we learn latent stock and news representations to facilitate similarity measurements, and apply a gating mechanism to prevent noisy news representations from flowing to a higher level encoding stage, which encodes each day's selected news representation. Extensive experiments on real-world stock market data demonstrate the effectiveness of our framework and show improvements over state-of-the-art techniques.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:46:43Z (GMT). No. of bitstreams: 1
ntu-108-R06946003-1.pdf: 2022170 bytes, checksum: 5a716c3b0fbf59257e00a396b17da87a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
Abstract iv
Chapter 1 Introduction 5
Chapter 2 Related Work 8
2.1 Lexicon-based method 8
2.2 Deep learning based method 10
Chapter 3 Empirical Analysis 12
3.1 Influence of Implicitly Related News 12
3.2 Scarcity of Explicit Target Mentions 13
Chapter 4 Methodology 17
4.1 Problem Formulation 17
4.2 News Distilling Networks 18
4.2.1 Collaborative Filtering Module 19
4.2.2 News-level Encoding 20
4.2.3 News Article Selection 21
4.2.4 Dense Temporal Encoding 22
4.2.5 Prediction and Loss Function 22
4.2.6 Training and Inference Procedures 23
Chapter 5 Experiments 25
5.1 Dataset 25
5.2 Experimental Setup 27
5.3 Model Evaluation 29
5.4 Effect of Collaborative Filtering 30
5.4.1 Ablation Study on CFM 30
5.4.2 Effect of Negative Sampling 31
5.4.3 Visualization of Learned Embeddings 32
5.5 Zero-seed Inference 33
5.6 News Selection Case Study 35
5.7 Market Simulation 36
Chapter 6 Conclusions 39
Reference 40
dc.language.isoen
dc.subject股票趨勢預測zh_TW
dc.subject深度學習zh_TW
dc.subject協同過濾zh_TW
dc.subjectStock Movement Predictionen
dc.subjectDeep learningen
dc.subjectCollaborative Filteringen
dc.title基於密集隱性相關新聞序列之股票趨勢預測zh_TW
dc.titleNews-Oriented Stock Movement Prediction on Dense Temporal Sequence Using Implicit Newsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張元顯,蔡銘峰
dc.subject.keyword股票趨勢預測,深度學習,協同過濾,zh_TW
dc.subject.keywordStock Movement Prediction,Deep learning,Collaborative Filtering,en
dc.relation.page44
dc.identifier.doi10.6342/NTU201902595
dc.rights.note有償授權
dc.date.accepted2019-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved