Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7459
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張豐丞(Feng-Cheng Chang)
dc.contributor.authorKei-Kei Chanen
dc.contributor.author陳旗旗zh_TW
dc.date.accessioned2021-05-19T17:44:07Z-
dc.date.available2023-08-15
dc.date.available2021-05-19T17:44:07Z-
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation參考文獻
劉素玲、盧崑宗(2013)氯化鋅活化法製備麻竹活性碳孔隙性質之探討。林產工業。32:147–154。
Asina, F. N. U., I. Brzonova, E. Kozliak, A. Kubátová and Y. Ji (2017) Microbial treatment of industrial lignin: Successes, problems and challenges. Renewable and Sustainable Energy Reviews 77: 1179–1205.
Aygün, A., S. Yenisoy-Karakaş, I. Duman (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials 66(2–3): 189–195.
Baker, D. A. and T. G. Rials (2013) Recent advances in low‐cost carbon fiber manufacture from lignin. Journal of Applied Polymer Science 130: 13–728.
Brebu, M. and C. Vasile (2010) Thermal degradation of lignin—a review. Cellulose Chemistry & Technology 44: 353.
Budinova, T., E. Ekinci, F. Yardim, A. Grimm, E. Björnbom, V. Minkova, and M. Goranova (2006) Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel processing technology 87: 899–905.
Cao, Q., K. C.Xie, Y. K. Lv and W. R. Bao (2006) Process effects on activated carbon with large specific surface area from corn cob. Bioresource Technology 97: 110–115.
Chandra, R., A. Raj, H. J. Purohit and A. Kapley (2007) Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67: 839–846.
Chen, C. P., C. H. Cheng, Y. H. Huang, C. T. Chen, C. M. Lai, O. V. Menyailo and Y. W. Yang (2014) Converting leguminous green manure into biochar: changes in chemical composition and C and N mineralization. Geoderma 232: 581–588.
Chen, L., X. Wang, H. Yang, Q. Lu, D. Li, Q. Yang, and H. Chen (2015) Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC-MS. Journal of Analytical and Applied Pyrolysis 113: 499–507.
Chen, X. Y. and Q. Q. Zhou (2012) The production of porous carbon from calcium lignosulfonate without activation process and the capacitive performance. Electrochimica Acta 71: 92–99.
Chu, S., A. V. Subrahmanyam and G. W. Huber (2013) The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green Chemistry 15: 125–136.
Danish, M., R., Hashim, M. N. M. Ibrahim and O. Sulaiman (2013) Characterization of physically activated acacia mangium wood-based carbon for the removal of methyl orange dye. BioResources 8: 4323–4339.
Dante, R. C., D. A. Santamaria and J. M. Gil (2009) Crosslinking and thermal stability of thermosets based on novolak and melamine. Journal of Applied Polymer Science 114: 4059–4065.
Daud, W. M. A. W. and W. S. W. Ali (2004) Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource Technology 93: 63–69.
Demirbas A. (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal Analytical and Applied Pyrol 72(2): 243–248.
Di Blasi, C., C. Branca, A. Santoro and E. G. Hernandez (2001) Pyrolytic behavior and products of some wood varieties. Combustion and Flame 124: 165–177.
Dugan, E., A. Verhoef, S. Robinson and S. Sohi (2010) Bio-char from sawdust, maize stover and charcoal: Impact on water holding capacities (WHC) of three soils from Ghana. In 19th World Congress of Soil Science, Symposium 4: 9–12.
El Mansouri, N. E. and J. Salvadó (2006) Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Industrial Crops and Products 24: 8–16.
Gay-Lussac, J. L. (1802) 'Recherches sur la dilatation des gaz et des vapeurs' (Researches on the expansion of gases and vapors). Annales de chimie 43: 137–175.
Gomez, C. J., G. Varhegyi and L. Puigjaner (2005) Slow pyrolysis of woody residues and an herbaceous biomass crop: a kinetic study. Industrial & Engineering Chemistry Research 44: 6650–6660.
Guo, Y. and D. A. Rockstraw (2006) Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon 44: 1464–1475.
Hayashi, J. I., A. Kazehaya, K. Muroyama and A. P. Watkinson (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38: 1873–1878.
Heidari, A., H. Younesi, A. Rashidi and A. Ghoreyshi (2014) Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: Effect of chemical activation. Journal of the Taiwan Institute of Chemical Engineers 45: 579–588.
Heymann, K., J. Lehmann, D. Solomon, M. W. I. Schmidt and T. Regier (2011) C 1s K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy for characterizing functional group chemistry of black carbon. Organic Geochemistry 42: 1055–1064.
Hou, C. H., N. L. Liu and H. C. Hsi (2015) Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes. Chemosphere 141: 71–79.
Huang, Y., E. Ma and G. Zhao (2015) Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers. Industrial Crops and Products 69: 447–455.
Ioannidou, O. and A. Zabaniotou (2007) Agricultural residues as precursors for activated carbon production—a review. Renewable and Sustainable Energy Reviews 11: 1966–2005.
Kadla, J. F., S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere and W. Griffith (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40: 2913–2920.
Kärkäs, M. D., B. S. Matsuura, T. M. Monos, G. Magallanes and C. R. Stephenson (2016) Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Organic & Biomolecular Chemistry 14: 1853–1914.
Kawamoto, H. (2017) Lignin pyrolysis reactions. Journal of Wood Science 63: 117–132.
Klemetsrud, B., D. Eatherton and D. Shonnard (2017) Effects of Lignin Content and Temperature on the Properties of Hybrid Poplar Bio-Oil, Char, and Gas Obtained by Fast Pyrolysis. Energy & Fuels 31: 2879–2886.
Laine, J. and A. Calafat (1991) Factors affecting the preparation of activated carbons from coconut shell catalized by potassium. Carbon 29: 949–953.
Laurichesse S. and L. Avérous (2013) Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science 39: 1266–1290.
Lemes, A. P., M. A. Soto-Oviedo, W. R. Waldman, L. H. Innocentini-Mei and N. Durán (2010) Effect of Lignosulfonate on the Thermal and Morphological Behavior of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Journal of Polymers and the Environment 18: 250–259.
Li, J., Y. Li, Y. Wu and M. Zheng (2014) A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. Journal of Hazardous Materials 280: 450–457.
Liu, C., Hu, J., H. Zhang and R. Xiao (2016) Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel 182: 864–870.
Liu, C., Xu, J., Hu, J., H. Zhang and R. Xiao (2017) Metal Ion‐Catalyzed Hydrothermal Liquefaction of Calcium Lignosulfonate in Subcritical Water. Chemical Engineering & Technology 40: 1092–1100.
Liu, F. Y. and D. R. Cao (2008) Progress in Utilization of Lignin from Pulping Spent Liquor. Journal of Cellulose Science and Technology 16: 65–70.
Liu, X., Y. Ye, Y. Liu, A. Zhang, X. Zhang, L. Li and J. Zheng (2014) Sustainable biochar effects for low carbon crop production: A 5–crop season field experiment on a low fertility soil from Central China. Agricultural Systems 129: 22–29.
Liu, Z., Hoekman, S. K., R. Balasubramanian and F. S. Zhang (2015) Improvement of fuel qualities of solid fuel biochars by washing treatment. Fuel Processing Technology 134: 130–135.
Marsh, H. and F. Rodríguez-Reinoso (2006) Activated carbon. Oxford: Elsevier Ltd.
Matsubara, Y. I., N. Hasegawa and H. Fukui (2002) Incidence of Fusarium Root Rot in Asparagus Seedlings Infected with Arbuscular Mycorrhizal Fungus as Affected by Several Soil Amendments. Journal of the Japanese Society for Horticultural Science 71: 370–374.
Montané, D., V. Torné-Fernández and V. Fierro (2005) Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. Chemical Engineering Journal 106: 1–12.
Muley, P. D., C. Henkel, K. K. Abdollahi, C. Marculescu and D. Boldor (2016) A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor. Energy Conversion and Management 117: 273–280.
Myglovets, M., O. I. Poddubnaya, O. Sevastyanova, M. E. Lindström, B. Gawdzik, M. Sobiesiak and A. M. Puziy (2014) Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon 80: 771–783.
Nimz, H. (1983) Lignin-based wood adhesives. In Wood Adhesives. Chemistry and Technology (Ed. A. Pizzi). Marcel Dekker Inc. New York. 247–288 pp.
Norberg, I. (2012) Carbon fibres from kraft lignin. Ph.D. Thesis. Royal Institute of Technology. KTH. Stockholm, Sweden.
Novak, J. M., W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts and M. A. Niandou (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science 174: 105–112.
Ould-Idriss, A., M. Stitou, E. M. Cuerda-Correa, C. Fernández-González, A. Macías-García, M. F. Alexandre-Franco and V. Gómez-Serrano (2011) Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4. Fuel processing technology 92: 261–265.
Parthasarathi, R., R. A. Romero, A. Redondo and S. Gnanakaran (2011) Theoretical study of the remarkably diverse linkages in lignin. The Journal of Physical Chemistry Letters 2: 2660–2666.
Rajkovich, S., A. Enders, K. Hanley, C. Hyland, A. R. Zimmerman and J. Lehmann (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils 48: 271–284.
Rashidi, N. A. and S. Yusup (2016) An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization 13: 1–16.
Rodrigues Pinto, P. C., E. A. Borges da Silva and A. E. Rodrigues (2010) Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Industrial & Engineering Chemistry Research 50: 741–748.
Rodriguez-Reinoso, F. (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36: 159–175.
Shaaban, A., S. M. Se, I. M. Ibrahim and Q. Ahsan (2015) Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption. New Carbon Materials 30: 167–175.
Sharma, R. K., J. B. Wooten, V. L. Baliga, X. Lin, W. G. Chan and M. R. Hajaligol (2004) Characterization of chars from pyrolysis of lignin. Fuel 83: 1469–1482.
Shu, R., Y. Xu, L. Ma, Q. Zhang, T. Wang, P. Chen and Q. Wu (2016) Hydrogenolysis process for lignosulfonate depolymerization using synergistic catalysts of noble metal and metal chloride. RSC Advances 6: 88788–88796.
Steudle, L. M., E. Frank, A. Ota, U. Hageroth, S. Henzler, W. Schuler, and M. R. Buchmeiser (2017) Carbon fibers prepared from melt spun peracylated softwood lignin: an integrated approach. Macromolecular Materials and Engineering 302: 1600441.
Solomon, D., J. Lehmann, J. Kinyangi, B. Liang, K. Heymann, L. Dathe, K. Hanley, S. Wirick and C. Jacobsen (2009) Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference organic compounds. Soil Science Society of America Journal 73: 1817–1830.
Suzuki, H., J. Cao, F. Jin, A. Kishita, H. Enomoto and T. Moriya (2006) Wet oxidation of lignin model compounds and acetic acid production. Journal of Materials Science 41(5): 1591–1597.
Tejado A., C. Peña, J. Labidi, J. M. Echeverria and I. Mondragon (2007) Physico–chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technology 98: 1655–1663.
Van Z. L., S. Kimber, S. Morris, K. Y. Chan, A. Downie, J. Rust and A. Cowie (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327: 235–246.
Wallberg O., M. Linde and A.S. Jönsson (2006) Extraction of lignin and hemicelluloses from kraft black liquor. Desalination 199: 413–414.
Wang, L., X. Li, J. Ma, Q. Wu and X. Duan (2014) Non-activated, N, S-co-doped biochar derived from banana with superior capacitive properties. Sustainable Energy, 2: 39–43.
Wang, S., X. Guo, K. Wang and Z. Luo (2011) Influence of the interaction of components on the pyrolysis behavior of biomass. Journal of Analytical and Applied Pyrolysis 91: 183–189.
Wang, X., Z. Zhou, X. Guo, Q. He, C. Hao and C. Ge (2016) Ultrasonic-assisted synthesis of sodium lignosulfonate-grafted poly (acrylic acid-co-poly (vinyl pyrrolidone)) hydrogel for drug delivery. RSC Advances 6: 35550–35558.
Wang, X., N. Liu, Y. Liu, L. Jiang, G. Zeng, X. Tan, S. Liu, Z. Yin, S. Tian and J. Li (2017) Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry. International Journal of Environmental Research and Public Health 14: 1213.
Watkins, D., M. Nuruddin, M. Hosur, A. Tcherbi-Narteh and S. Jeelani (2015) Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology 4: 26–32.
Wornat M. J., E. B. Ledesma and N.D. Marsh (2001) Polycyclic aromatic hydrocarbons from the pyrolysis of catechol (ortho-dihydroxybenzene), a model fuel representative of entities in tobacco, coal, and lignin. Fuel 80:1711–1726.
Xia, C. and S. Q. Shi (2016) Self-activation for activated carbon from biomass: Theory and parameters. Green Chemistry 18: 2063–2071.
Yang, H., R. Yan, H. Chen, D. H. Lee and C. Zheng (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781–1788.
Yorgun, S. and D. Yıldız (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers 53: 122–131.
Yuan, J. H., R. K. Xu and H. Zhang (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 102: 3488–3497.
Zhang, J., J. Liu and R. Liu (2015) Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology 176: 288–291.
Zhang, Y. H. P. (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology & Biotechnology 35: 367–375.
Zanzi, R. (2001) Pyrolysis of Biomass, Dissertation, Royal Institute of Technology. Department of Chemical Engineering and Technology. Stockholm. 6 pp.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7459-
dc.description.abstract本實驗利用工業木質素—木質素磺酸鹽作為研究材料,探討木質素磺酸鹽原材料性質及生產炭材的製程及其產物性質,不同的製程條件包括熱裂解加熱溫度、升溫速率和持溫時間以及後續的不同洗滌處理(去離子水超音波振盪水洗或磷酸浸泡酸洗)。分析項目可分為:表面形態和孔隙性質、化學性質以及熱性質。表面形態及孔隙性質包括了掃描式電子顯微鏡及比表面積、孔隙率和孔徑分析;化學性質分析包括了熱裂解氣相層析質譜分析了解化合物組成,元素分析了解碳元素含量變化,傅立葉轉換紅外線光譜分析了解化學官能基變化,X-射線繞射分析及近邊緣X光吸收近邊緣結構光譜分析了解石墨化程度和芳香環碳及羧酸碳的變化,界面電位分析了解材料分散性、表面電荷及等電位點;熱性質包括了示差掃描熱量分析及熱重分析,分析材料吸放熱情形及熱穩定性。研究結果顯示,木質素磺酸鹽經高溫熱裂解後從原本棕色的粉末顆粒狀變成了黑色的固塊狀,顆粒相互熔融在一起,表面佈滿孔洞以及出現顆粒膨脹變形的情況,推測為在熱裂解過程中,因自活化及高溫所發生的交聯反應和氣化反應導致氣體蒸散所造成炭材的多孔性。此外,炭材的碳含量會隨著熱裂解溫度上升而增加,但熱裂解溫度上升會使產率下降。對於炭材的洗滌處理,結果顯示,水洗處理和酸洗處理皆有效去除焦油和灰分等雜質使產物的碳含量增加,且酸洗會優於水洗。但水洗處理的炭材卻有最佳的熱穩定性及分散性。研究結果也顯示,當熱裂解溫度上升時,水洗處理炭材中的芳香環的碳結構呈增加趨勢,而羧酸的碳結構則是呈下降趨勢,熱裂解溫度需超過600°C時,才會有較多的芳香環的碳,形成石墨化的結構。而水洗處理炭材的平均孔徑會隨熱裂解溫度增加而變小,而比表面積會隨著熱裂解溫度上升,會呈先上升後下降的趨勢,熱裂解溫度為900°C時有最高的比表面積,為688.5 m2 g-1。而炭材的孔隙度大小則跟熱裂解溫度沒有太大的相關,整體都落在70–80%之間。而吸脫附等溫線和孔徑分佈的結果都顯示了木質素磺酸鹽炭材的孔隙結構為微孔的構造。zh_TW
dc.description.abstractIn this study, the properties of lignin-based charcoal materials made by lignosulfonate (a technical lignin) through different process parameters were investigated, such as pyrolysis temperature, heating rate, holding time and washing treatment (Deionized water washing with ultrasonicator, acid washing by phosphoric acid). Analysis tests include surface morphology and pore properties, chemical properties and thermal properties. Surface morphology and pore properties include scanning electron microscope, surface area porosity and pore diameter analysis. Chemical properties include pyrolysis-gas chromatography/mass spectrometry, elemental analysis, fourier transform infrared spectroscope, X-ray diffraction, near edge X-ray absorption fine structure and zeta potential. Thermal properties include differential scanning calorimetry and thermogravimetric analysis. Results show that after pyrolysis processing, lignosulfonate particles would form porous charcoal spheres, caused by self-activation, cross-linking and gasification reaction caused by high temperature, gas emission during pyrolysis resulted in the porous structures for the lignin-based charcoals, producing the more porous structures for lignin-based charcoals. Furthermore, the carbon content of lignin-based charcoals has significantly increased with elevating pyrolysis temperatures. As the degreaser, deionized water and phosphoric acid can remove impurity of lignin-based charcoal increased the carbon content. In contrast to carbon content, the yields of lignin-based charcoals decreased with elevating pyrolysis temperatures and washing treatment. Acid washing charcoals have the highest carbon content, but deionized water washing charcoals have the best thermal stability and dispersibility. The results also show that the charcoal’s aromatic ring structure would increase and carboxylic carbon would decrease when pyrolysis temperature was increased. However, the graphitized structure could form only when the pyrolysis temperature was over 600°C. And the average pore diameter of the lignin-based charcoals washing by deionized water were decreased when the pyrolysis temperature was increased, but the surface area would first rise and then fall, the lignin-based charcoal has the highest surface area (688.5 m2 g-1) when the pyrolysis temperature was at 900°C. The porosity of the charcoals has no significance to pyrolysis temperature, the porosity of all lignin-based charcoals washing by deionized water was between 70–80%. The results of adsorption isotherms and pore size distribution both show that the pore structures of lignin-based charcoals are micro-pore.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:44:07Z (GMT). No. of bitstreams: 1
ntu-107-R04625055-1.pdf: 4812335 bytes, checksum: 4366b39ca190a8361616589c921eb3e5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 xi
一、前言 1
二、文獻回顧 2
2.1. 木質素 2
2.1.1. 木質素結構與合成 2
2.1.2. 工業木質素 4
2.1.3. 木質素熱裂解過程 5
2.2. 生物質多孔性炭材料 6
2.2.1. 活性碳 6
2.2.2. 生物炭 9
2.3. 生物質炭材料孔洞形成機制 9
2.3.1. 化學活化 9
2.3.2. 物理活化 10
2.3.3. 自活化 11
2.4. 製程條件對炭材料性質之影響 11
三、材料與方法 12
3.1. 木質素磺酸鹽原材料 12
3.2. 木質素磺酸鹽炭材製程 13
3.3. 性質分析 17
3.3.1. 形態與孔隙分析 17
3.3.2. 化學性質分析 18
3.3.3. 熱性質分析 19
3.4. 實驗流程 20
四、結果與討論 21
4.1. 木質素磺酸鹽材料及其性質分析 21
4.1.1. 木質素磺酸鹽形態分析 21
4.1.2. 木質素磺酸鹽化學性質分析 21
1. 元素分析 21
2. 熱裂解產物分析 22
3. 傅立葉轉換紅外線光譜分析 24
4.1.3. 木質素磺酸鹽熱性質分析 26
1. 示差掃描熱量分析 26
2. 熱重分析 29
4.2. 木質素磺酸鹽炭材及其性質分析 31
4.2.1. 持溫條件及升溫速率對木質素磺酸鹽炭材之特性影響 31
4.2.2. 熱裂解溫度及洗滌處理對木質素磺酸鹽炭材之特性影響 33
1. 表面形態特徵 33
2. 產率及元素比例改變 35
3. 熱性質分析 37
4. 界面電位 44
5. 小結 45
4.2.3. 水洗處理木質素磺酸鹽炭材後續特性分析 45
1. 化學官能基變化 45
2. 石墨化程度 48
3. 化學結構變化 48
4. 界面電位 49
5. 孔隙性質 51
6. 小結 54
4.2.4. 炭材形成機制探討 54
1. 木質素熔融機制 54
2. 木質素磺酸鹽炭材孔洞形成機制 55
五、結論 58
參考文獻 60
dc.language.isozh-TW
dc.title木質素磺酸鹽製備炭材特性之研究zh_TW
dc.titleStudy on Charcoal Materials Fabricated from Lignosulfonateen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor鄭智馨(Chih-Hsin Cheng)
dc.contributor.oralexamcommittee林翰謙(Han-Chien Lin),羅盛峰(Sheng-Fong Lo),郭佩鈺(Pei-Yu Kuo)
dc.subject.keyword木質素,木質素磺酸鹽,炭材,熱裂解,多孔性材料,zh_TW
dc.subject.keywordlignin,lignosulfonate,charcoal,pyrolysis,porous material,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201803515
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
dc.date.embargo-lift2023-08-15-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf4.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved