Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7451
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃定洧(Ding-Wei Huang)
dc.contributor.authorChun-Yang Linen
dc.contributor.author林羣洋zh_TW
dc.date.accessioned2021-05-19T17:43:57Z-
dc.date.available2025-02-04
dc.date.available2021-05-19T17:43:57Z-
dc.date.copyright2020-02-04
dc.date.issued2020
dc.date.submitted2020-02-03
dc.identifier.citation[1] D. Reinsel, J. Gantz, and J. Rydning, The Digitization of the World. From Edge to Core, An IDC White Paper (2018)
[2] 陳柏翰, 超寬頻淺蝕刻型次波長光柵多模干涉分光器, 國立臺灣大學光電工程學研究所碩士論文 (2019).
[3] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, 'Recent advances in optical technologies for data centers: a review,' Optica, vol. 5, no. 11, pp. 1354-1370 (2018)
[4] X. Zhou, H. Liu, and R. Urata, 'Datacenter optics: requirements, technologies, and trends (Invited Paper),' Chinese Optics Letters, vol. 15, no. 5, p. 120008 (2017)
[5] S. Inao, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, 'Multicore optical fiber,' presented at the Optical Fiber Communication, Washington, D.C., March 6 (1979).
[6] S. Sugimoto et al., 'Wavelength division two-way fibre-optic transmission experiments using micro-optic duplexers,' Electronics Letters, vol. 14, no. 1, pp. 15-17 (1978)
[7] K. R. German, 'Polarization beam splitters for pumping of Fii-center lasers,' Optics Letters, vol. 4, no. 2, pp. 68-69 (1979)
[8] S. Berdagué and P. Facq, 'Mode division multiplexing in optical fibers,' Applied Optics, vol. 21, no. 11, pp. 1950-1955 (1982)
[9] H. Xiao, Introduction to Semiconductor Manufacturing Technology, SPIE (2012)
[10] R. G. Hunsperger, Integrated Optics: Theory and Technology, Springer New York (2009)
[11] K. Yamada, Silicon Photonics II: Components and Integration, Springer Berlin Heidelberg (2011)
[12] M. J. Deen and P. K. Basu, Silicon photonics fundamentals and devices, Wiley (2012)
[13] J. S. Orcutt and R. J. Ram, 'Photonic Device Layout Within the Foundry CMOS Design Environment,' IEEE Photonics Technology Letters, vol. 22, no. 8, pp. 544-546 (2010)
[14] G. T. R. A. P. Knights, 'Fabrication of Silicon Waveguide Devices,' in Silicon Photonics: An Introduction, pp.111-143, Wiley (2004)
[15] B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, 'Advances in silicon-on-insulator optoelectronics,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, no. 6, pp. 938-947 (1998)
[16] M. Ye, Y. Yu, C. Sun, and X. Zhang, 'On-chip data exchange for mode division multiplexed signals,' Optics Express, vol. 24, no. 1, pp. 528-535 (2016)
[17] C. Sun, Y. Yu, G. Chen, and X. Zhang, 'On-chip switch for reconfigurable mode-multiplexing optical network,' Optics Express, vol. 24, no. 19, pp. 21722-21728 (2016)
[18] R. B. Priti, H. Pishvai Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, 'Mode selecting switch using multimode interference for on-chip optical interconnects,' Optics Letters, vol. 42, no. 20, pp. 4131-4134 (2017)
[19] R. B. Priti and O. Liboiron-Ladouceur, 'Reconfigurable and Scalable Multimode Silicon Photonics Switch for Energy-Efficient Mode-Division-Multiplexing Systems,' Journal of Lightwave Technology, vol. 37, no. 15, pp. 3851-3860 (2019)
[20] X. Zi, L. Wang, K. Chen, and K. S. Chiang, 'Mode-Selective Switch Based on Thermo-Optic Asymmetric Directional Coupler,' IEEE Photonics Technology Letters, vol. 30, no. 7, pp. 618-621 (2018)
[21] Q. Huang, W. Jin, and K. S. Chiang, 'Broadband mode switch based on a three-dimensional waveguide Mach–Zehnder interferometer,' Optics Letters, vol. 42, no. 23, pp. 4877-4880 (2017)
[22] S.-H. Kim et al., 'High-Performance Silicon MMI Switch Based on Thermo-Optic Control of Interference Modes,' IEEE Photonics Technology Letters, vol. PP, pp. 1-1 (2018)
[23] A. Das, Lectures on Electromagnetism, World Scientific (2013)
[24] Z. Zhu and T. G. Brown, 'Full-vectorial finite-difference analysis of microstructured optical fibers,' Optics Express, vol. 10, no. 17, pp. 853-864 (2002)
[25] Lumerical Inc. Retrieved on December 20, 2019, from
https://support.lumerical.com/hc/en-us/articles/360034917233
[26] Lumerical Inc. Retrieved on December 20, 2019, from
https://support.lumerical.com/hc/en-us/articles/360034396614-MODE-EigenMode-Expansion-EME-solver-introduction
[27] D. F. G. Gallagher and T. P. Felici, Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons, SPIE (2003)
[28] K. S. Yee, 'Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,' IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307 (1966)
[29] 劉宇騏, 以平行化時域有限差分法研究多段轉折奈米天線結構, 國立臺灣大學光電工程學研究所碩士論文 (2016).
[30] Lumerical Inc. Retrieved on December 20, 2019, from
https://support.lumerical.com/hc/en-us/articles/360034914633-Finite-Difference-Time-Domain-FDTD-solver-introduction
[31] D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, Wiley (2013)
[32] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House (2005)
[33] S. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics, Morgan & Claypool (2011)
[34] J. Kennedy and R. Eberhart, 'Particle swarm optimization,' presented at the Proceedings of ICNN'95 - International Conference on Neural Networks, Nov. 27 - Dec. 1 (1995).
[35] J. Robinson and Y. Rahmat-Samii, 'Particle swarm optimization in electromagnetics,' IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407 (2004)
[36] 趙振宇, 極小半徑矽光子90度波導彎曲結構之設計, 國立臺灣大學光電工程學研究所碩士論文 (2019).
[37] Eberhart and S. Yuhui, 'Particle swarm optimization: developments, applications and resources,' presented at the Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 27-30 May 2001 (2001).
[38] K. E. Parsopoulos and M. N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances and Applications, IGI Global (2010)
[39] Lumerical Inc. Retrieved on December 20, 2019, from
https://support.lumerical.com/hc/en-us/articles/360034922953-Optimization-utility#h_9ffde7a6-3650-4883-a7fc-63b8ba1ad066
[40] K. Okamoto, 'Chapter 2 - Planar optical waveguides,' in Fundamentals of Optical Waveguides (Second Edition), pp.13-55, Academic Press (2006)
[41] L. B. Soldano and E. C. M. Pennings, 'Optical multi-mode interference devices based on self-imaging: principles and applications,' Journal of Lightwave Technology, vol. 13, no. 4, pp. 615-627 (1995)
[42] M. Bachmann, P. A. Besse, and H. Melchior, 'General self-imaging properties in N × N multimode interference couplers including phase relations,' Applied Optics, vol. 33, no. 18, pp. 3905-3911 (1994)
[43] W. Song and K. Xie, 'Optimal design of a multi-mode interference splitter based on SOI,' Optoelectronics Letters, vol. 4, no. 2, pp. 92-95 (2008)
[44] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, 'Silicon optical modulators,' Nature Photonics, vol. 4, no. 8, pp. 518-526 (2010)
[45] W. Koechner and M. Bass, 'Thermo-Optic Effects,' in Solid-State Lasers: A Graduate Text, pp.245-278, Springer New York (2003)
[46] G. T. R. A. P. Knights, Silicon Photonics: An Introduction, Wiley (2004)
[47] J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, 'Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,' vol. 101, no. 4, p. 041905 (2012)
[48] T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics, Butterworth-Heinemann (1973)
[49] R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, 'Scalable 2×2 Multimode Switch for Mode-Multiplexed Silicon Photonics Interconnects,' presented at the 2018 Asia Communications and Photonics Conference (ACP), 26-29 Oct. 2018 (2018).
[50] R. B. Priti and O. Liboiron-Ladouceur, 'A Reconfigurable Multimode Demultiplexer/Switch for Mode-Multiplexed Silicon Photonics Interconnects,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 6, pp. 1-10 (2018)
[51] C. Li and D. Dai, 'Low-loss and low-crosstalk multi-channel mode (de)multiplexer with ultrathin silicon waveguides,' Optics Letters, vol. 42, no. 12, pp. 2370-2373 (2017)
[52] Lumerical Inc. Retrieved on December 23, 2019, from
https://support.lumerical.com/hc/en-us/articles/360026142074#h_56e0fe02-5fc4-4ebb-89bc-ae532fc219bd
[53] Lumerical Inc. Retrieved on December 31, 2019, from
https://support.lumerical.com/hc/en-us/articles/360034928073-appevalscript
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7451-
dc.description.abstract本論文所追求的目標是一個模態切換器的尺寸小型化,為了達成這一目標,本研究將調制區塊與元件主要結構整合,在多模干涉結構的兩側進行折射率變化使得模態場型在多模干涉結構中產生偏移,在輸出端達成模態切換的效果,利用這樣的方法可以大幅減少元件的尺寸,在長度方面本論文的元件能夠將以往大於數百微米的模態切換器縮小到只需 38.4 微米,寬度方面則可以降到 3 微米的大小。
在數值模擬方面,本論文設計的是一個雙模態的切換器,針對輸入的 TE0 與 TE1 模態進行切換,為了能夠使元件能夠與半導體製程相符,絕緣上矽 (Silicon On Insulator, SOI) 被選為基板,然後使用商用光學模擬軟體 Lumerical 進行光場在元件中傳播特性的模擬,再配合數學軟體 MATLAB®對模擬所求得的結果進一步分析與匯出數據圖。
在結果的部分,本研究所設計的元件在 1550 奈米光源下,在串擾部分針對 TE0 達到 –15.3803 dB、對 TE1 達到 –17.8115 dB,插入損耗的部分針對 TE0 為 –2.9618 dB、對 TE1 是 –4.2519 dB,頻寬的部分在插入損耗不超過 -4 dB串擾低於 -15 dB的條件下為10 奈米 (1545 奈米 ~ 1555 奈米),若是與其他的模態切換器做比較,本文的整合型元件能夠將 2700 μm2的尺寸大小縮小到只有 115.2 μm2,也因此成功達成了本研究的元件小型化目標。
zh_TW
dc.description.abstractThe goal of this thesis is to minimize the size of a mode switch. To make this happen, the index modulated regions were applied within both side of the multimode interference region in this design. With this design, the length of the mode switch can be shrunk from hundreds of micrometers down to only 38.4 micrometers and the width can be reduced to 3 micrometers.
In this thesis, an SOI (Silicon On Insulator) wafer was used for this two-mode switch which can take advantage of CMOS technology. As for the simulations, the commercial software Lumerical was chosen to simulate the optical propagation in the device and the mathematic software MATLAB® was used to calculate the result of the simulations and generate the result figure for further analysis.
The results of this work indicate that the crosstalk for the light signal at 1550 nm is –15.3803 dB and –17.8115 dB for TE0 and TE1, respectively. Meanwhile, the insertion loss is –2.9618 dB and –4.2519 dB for TE0 and TE1, respectively. The bandwidth for the insertion loss not exceeding –4 dB and the crosstalk under –15 dB is 10 nm (1545 nm – 1555 nm). Compared with other active mode switches, the design concept proposed in this thesis can reduce the device size from 2700 μm2 to 115.2 μm2. Thus, the goal for size minimization of the mode switch is successfully achieved in this thesis.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:43:57Z (GMT). No. of bitstreams: 1
ntu-109-R06941120-1.pdf: 5071126 bytes, checksum: 067da6bcf1c1f7851522de0466e79a2d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
第1章 序章 1
1-1 背景 1
1-2 研究動機 2
1-3 論文架構 3
第2章 基礎理論 4
2-1 馬克斯威爾方程式 (Maxwell’s Equations) 4
2-2 有限差分特徵模態法 (Finite Difference Eigenmode, FDE) 4
2-3 特徵模態展開法 (EigenMode Expansion, EME) 5
2-4 有限時域差分法 (Finite-Difference Time-Domain, FDTD) 6
2-5 粒子群最佳化 (Particle Swarm Optimization, PSO) 8
2-6 多模干涉 (Multimode Interference, MMI) 9
2-7 主動相位調制器 (Active Phase shifter) 12
第3章 文獻回顧 14
3-1 熱調控 MMI 單模切換器 14
3-2 三級 MMI 結構的雙模態切換器 17
3-3 模態多工器 21
第4章 雙模態切換器 23
4-1 元件設計方法 23
4-2 基本MMI 32
4-2-1 結構與結果 32
4-2-2 與三級 MMI 雙模切換器比較 34
4-2-3 頻譜響應 35
4-3 加入蝕刻的 MMI 36
4-3-1 結構與結果 37
4-3-2 與三級 MMI 雙模切換器比較 39
4-3-3 頻譜響應 39
第5章 製程容忍度分析 42
5-1 蝕刻區長度誤差分析 42
5-2 蝕刻區寬度誤差分析 44
5-3 輸入端位置誤差分析 45
5-4 輸出端位置誤差分析 47
5-5 調制區寬度誤差分析 49
5-6 調制區位置誤差分析 50
5-7 MMI 長度誤差分析 53
5-8 MMI寬度誤差分析 55
第6章 結論與未來展望 57
6-1 結論 57
6-2 未來展望 57
參考文獻 58
dc.language.isozh-TW
dc.title基於簡單多模干涉結構的小型雙模態切換器zh_TW
dc.titleA Small Two-Mode Switch Based On A Simple Multimode Interference Structureen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),蕭惠心(Hui-Hsin Hsiao)
dc.subject.keyword多模干涉,模態切換器,絕緣上矽,折射率調制,zh_TW
dc.subject.keywordmultimode interference(MMI),mode switch,silicon on insulator(SOI),index modulate,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202000284
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-02-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
dc.date.embargo-lift2025-02-04-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf4.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved