Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74518
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙聖德(Sheng-Der Chao)
dc.contributor.authorJUN-JIE LIen
dc.contributor.author李俊頡zh_TW
dc.date.accessioned2021-06-17T08:40:19Z-
dc.date.available2022-08-13
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-07
dc.identifier.citation[1] T. Wu, D. Thompson, A double Timoshenko beam model for vertical vibration analysis of railway track at high frequencies, Journal of Sound and Vibration, 224 (1999) 329-348.
[2] J.-C. Hsu, H.-L. Lee, W.-J. Chang, Flexural vibration frequency of atomic force microscope cantilevers using the Timoshenko beam model, Nanotechnology, 18 (2007) 285503.
[3] S. Narendar, S. Gupta, S. Gopalakrishnan, Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory, Applied Mathematical Modelling, 36 (2012) 4529-4538.
[4] C. Ziegler, Cantilever-based biosensors, Analytical and bioanalytical chemistry, 379 (2004) 946-959.
[5] V. Jovanovic, A Fourier series solution for the transverse vibration response of a beam with a viscous boundary, Journal of Sound and Vibration, 330 (2011) 1504-1515.
[6] S. Motaghian, M. Mofid, J.E. Akin, A New Fourier series solution for free vibration of non-uniform beams, resting on variable elastic foundation, Scientia Iranica, 25 (2018) 2967-2979.
[7] J. Valle, D. Fernández, J. Madrenas, Closed-form equation for natural frequencies of beams under full range of axial loads modeled with a spring-mass system, International Journal of Mechanical Sciences, 153 (2019) 380-390.
[8] E.S. Bakalah, F. Zaman, K. Saleh, Linear and nonlinear vibrations of inhomogeneous Euler-Bernoulli beam, Coupled systems mechanics, 7 (2018) 635-647.
[9] Y. Kuo, W. Cleghorn, K. Behdinan, Stress-based finite element method for Euler-Bernoulli beams, Transactions of the Canadian Society for Mechanical Engineering, 30 (2006) 1-6.
[10] A. GHANNADIASL, M.Z. GOLMOGANY, Analysis of Euler-Bernoulli Beams with arbitrary boundary conditions on Winkler foundation using a B-spline collocation method, Engineering Transactions, 65 (2017) 423–445.
[11] M. Jafari, H. Djojodihardjo, K.A. Ahmad, Vibration analysis of a cantilevered beam with spring loading at the tip as a generic elastic structure, in: Applied Mechanics and Materials, Trans Tech Publ, 2014, pp. 407-413.
[12] R.C. Hibbeler, Mechanics of Materials, 9th Edition, Pearson, 2014.
[13] R.M. Mattheij, G. Söderlind, On inhomogeneous eigenvalue problems. I, Linear Algebra and its Applications, 88 (1987) 507-531.
[14] L. Ying, C. Dayong, Inhomogeneous eigenvalue problems, Tsinghua Science and Technology, 3 (1998) 1260-1264.
[15] A.F. Payam, M. Fathipour, Modeling and dynamic analysis of atomic force microscope based on Euler-Bernoulli beam theory, Digest Journal of Nanomaterial and Biostructures, 4 (2009) 789-801.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74518-
dc.description.abstract本文發明一個新的方法-分樑法(Split Beam Method),用於更有效率地解決尤拉伯努利樑的特徵質問題。其中利用了楊式模數項的拆解,將拆解後的楊式模數分別對應不同的負載形成子系統,將總系統拆解為多個子系統,並使用線性疊加的方式,疊加出總系統。
接著我們使用兩個例子示範如何使用SBM方法。第一個例子使用兩種不同的分布力,其中,為了解決非齊性特徵值的問題,我們使用了非齊性特徵值問題的公式,求得非齊性特徵值,並帶入非齊性特徵值,解出樑之撓度函數解析解。隨後控制其中一種分布力為定值,並逐步增加另一種分布力的值,當分布力逐漸變大時,我們可以發現增加之分布力所對應的子系統係數會漸漸增大,並主導整個總系統
第二個例子我們引用了關於原子力顯微鏡(AFM)探針的研究,並使用其模型,再稍作修改,將其中一個負載,原子間作用力改為端點力表示,隨後將震盪力設為定值,逐步增加端點力的數值,亦可發現端點力所對應的子系統係數會漸漸增大,並主導整個總系統。
由此兩個例子結果證實樑分離法是可行的,大大簡化了計算的複雜度,避免了一般傅立葉疊加法所導致的過多項數與其無效的計算,另外,也能解決傅立葉疊加法中無法找到主導項的問題。
zh_TW
dc.description.abstractThis study develops a new method, Split Beam Method(SBM). We utilize this method to solve the eigenvalue problem of Euler-Bernoulli Beam Equation more effectively. First of all, we split the Young’s Modulus corresponding to two or more subsystems with different loadings. Then we superimpose these sub-systems using linear superposition method.
Following, we show how to apply SBM by two examples. In the first one, we utilize two different distribution loadings. In order to solve the difficulty caused by inhomogeneous eigenvalue problem, we made use of the inhomogeneous eigenvalue problem formula to have the solution. Then, the exact solution of deflection function would be obtained by utilizing inhomogeneous eigenvalue formula. Simultaneously, we control one of a distributed loading as constant and gradually increase the value of another distributed loading. We can find that the coefficient of the related subsystem function will increase when the second loading becomes larger and the second loading will become the dominate item in the total system.
In the second one, we quote the paper about atomic force microscope, and use its model. Then, we modify a little to simulate SBM. We make Atomic Force(AFM) as a point force, and fix the oscillating force as constant. Then we find that the coefficient of the related subsystem function will increase when the second point force becomes larger and the point force will become the dominate item in the total system.
From the results of these two examples, we ensure SBM is a correct and effective method. It simplify complex calculation and avoid multi- item behavior and useless calculation from Fourier superposition. In addition, SBM also provide one simple way to know which loading is the dominated one which is impossible to know from Fourier superposition.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:40:19Z (GMT). No. of bitstreams: 1
ntu-108-R04543024-1.pdf: 3700771 bytes, checksum: 3c393fc87bf635c6bc7f41a64e381c59 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 研究動機 1
1.2 Euler–Bernoulli Beam Theory 2
第二章 SBM理論介紹 5
第三章 模型系統範例一 10
3.1 自由震盪 10
3.2 模型一架構 12
3.2.1 上斜分布力對應之子系統W_1 (x) 13
3.2.2 下斜分布力對應之子系統W_2 (x) 16
3.2.3 上斜分布力加下斜分布力對應之總系統 W(x) 18
3.3 模型參數值 20
3.4 結果與討論 22
第四章 模型系統範例二 53
4.1 模型二架構 53
4.1.1 端點力對應之子系統W_1 (x) 57
4.1.2 震盪力對應之子系統W_2 (x) 59
4.1.3 端點力加震盪力對應之總系統W(x) 61
4.2 模型參數值 63
4.3 結果與討論 65
第五章 結論與未來展望 83
5.1 結論 83
5.2 未來展望 83
參考文獻 85
附錄[A] 87
dc.language.isozh-TW
dc.subject原子力顯微鏡zh_TW
dc.subject分樑法zh_TW
dc.subject尤拉伯努利樑特徵質問題zh_TW
dc.subject非齊性特徵值zh_TW
dc.subjectSplit Beam Methoden
dc.subjecteigenvalue problem of Euler-Bernoulli Beam Equationen
dc.subjectinhomogeneous eigenvalue problemen
dc.subjectatomic force microscopeen
dc.title使用分樑法求多重負載懸臂樑震盪模態函zh_TW
dc.titleSplit Beam Method for Approximately Determining Modal Shape Function of Cantilever Beam under Multiple Loadingen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee舒貽忠(Yi-Chung Shu),吳光鐘(Kuang-Chong Wu),陳志鴻(Chih-Hung Chen),施博仁(Po-Jen Shih)
dc.subject.keyword分樑法,尤拉伯努利樑特徵質問題,非齊性特徵值,原子力顯微鏡,zh_TW
dc.subject.keywordSplit Beam Method,eigenvalue problem of Euler-Bernoulli Beam Equation,inhomogeneous eigenvalue problem,atomic force microscope,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201902776
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved