Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢義隆(I-Lung Chien)
dc.contributor.authorWei-Cheng Shenen
dc.contributor.author沈瑋呈zh_TW
dc.date.accessioned2021-06-17T08:40:02Z-
dc.date.available2024-08-19
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-07
dc.identifier.citation[1] Yang, A.; Wei, R. X.; Sun, S. R.; Wei, S. A.; Shen, W. F.; Chien, I. L., Energy-Saving Optimal Design and Effective Control of Heat Integration-Extractive Dividing Wall Column for Separating Heterogeneous Mixture Methanol/Toluene/Water with Multiazeotropes. Ind. Eng. Chem. Res. 2018, 57, 8036-8056.
[2] Guang, C.; Shi, X.; Zhang, Z.; Wang, C.; Wang, C.; Gao, J., Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures. Chem. Eng. Res. Des. 2019, 143, 249-260.
[3] Shi, T.; Yang, A.; Jin, S.; Shen, W.; Wei, S. a.; Ren, J., Comparative optimal design and control of two alternative approaches for separating heterogeneous mixtures isopropyl alcohol-isopropyl acetate-water with four azeotropes. Sep. Purif. Technol. 2019, 225, 1-17.
[4] Toth, A. J., Comprehensive evaluation and comparison of advanced separation methods on the separation of ethyl acetate-ethanol-water highly non-ideal mixture. Sep. Purif. Technol. 2019, 224, 490-508.
[5] Wang, C.; Zhang, Z. S.; Zhang, X. K.; Gao, J.; Stewart, B., Energy-saving hybrid processes combining pressure-swing reactive distillation and pervaporation membrane for n-propyl acetate production. Sep. Purif. Technol. 2019, 221, 1-11.
[6] Yang, A.; Shen, W.; Wei, S. a.; Dong, L.; Li, J.; Gerbaud, V., Design and Control of Pressure-Swing Distillation for Separating Ternary Systems with Three Binary Minimum Azeotropes. AIChE J. 2019, 65, 1281-1293.
[7] Mahdi, T.; Ahmad, A.; Nasef, M. M.; Ripin, A., State-of-the-Art Technologies for Separation of Azeotropic Mixtures. Sep. Purif. Rev. 2015, 44, 308-330.
[8] Lei, Z.; Li, C.; Chen, B., Extractive Distillation: A Review. Sep. Purif. Rev. 2003, 32, 121-213.
[9] Zhao, Y.; Ma, K.; Bai, W.; Du, D.; Zhu, Z.; Wang, Y.; Gao, J., Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy 2018, 148, 296-308.
[10] Wang, Y.; Bu, G.; Geng, X.; Zhu, Z.; Cui, P.; Liao, Z., Design optimization and operating pressure effects in the separation of acetonitrile/methanol/water mixture by ternary extractive distillation. J. Clean. Prod. 2019, 218, 212-224.
[11] Wang, Y.; Zhang, Z.; Xu, D.; Liu, W.; Zhu, Z., Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures. J. Process Control 2016, 42, 59-76.
[12] Luyben, W. L., Comparison of flowsheets for THF/water separation using pressure-swing distillation. Comput. Chem. Eng. 2018, 115, 407-411.
[13] Zhang, Q.; Liu, M.; Li, W.; Li, C.; Zeng, A., Heat-integrated triple-column pressure-swing distillation process with multi-recycle streams for the separation of ternary azeotropic mixture of acetonitrile/methanol/benzene. Sep. Purif. Technol. 2019, 211, 40-53.
[14] Le, Q.-K.; Halvorsen, I. J.; Pajalic, O.; Skogestad, S., Dividing wall columns for heterogeneous azeotropic distillation. Chem. Eng. Res. Des. 2015, 99, 111-119.
[15] Zhao, L.; Lyu, X.; Wang, W.; Shan, J.; Qiu, T., Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Comput. Chem. Eng. 2017, 100, 27-37.
[16] Huang, X.; Li, Z.; Tian, Y., Process optimization of an industrial acetic acid dehydration progress via heterogeneous azeotropic distillation. Chin. J. Chem. Eng. 2018, 26, 1631-1643.
[17] Lucia, A.; Amale, A.; Taylor, R., Energy Efficient Hybrid Separation Processes. Ind. Eng. Chem. Res. 2006, 45, 8319-8328.
[18] Garcia-Chavez, L. Y.; Schuur, B.; de Haan, A. B., Conceptual Process Design and Economic Analysis of a Process Based on Liquid–Liquid Extraction for the Recovery of Glycols from Aqueous Streams. Ind. Eng. Chem. Res. 2013, 52, 4902-4910.
[19] Nhien, L. C.; Long, N. V. D.; Kim, S.; Lee, M., Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass. Biotechnol Biofuels 2017, 10, 81.
[20] Jana, A. K., Heat integrated distillation operation. Applied Energy 2010, 87, 1477-1494.
[21] Skiborowski, M.; Harwardt, A.; Marquardt, W., Conceptual Design of Distillation-Based Hybrid Separation Processes. Annu. Rev. Chem. Biomol. Eng. 2013, 4, 45-68.
[22] Kraemer, K.; Harwardt, A.; Bronneberg, R.; Marquardt, W., Separation of butanol from acetone-butanol-ethanol fermentation by a hybrid extraction-distillation process. Comput. Chem. Eng. 2011, 35, 949-963.
[23] Kürüm, S.; Fonyo, Z.; Kut, Ö. M., Design strategy for acetic acid recovery. Chem. Eng. Commun. 1995, 136, 161-176.
[24] Martinez, A. A.; Saucedo-Luna, J.; Segovia-Hernandez, J. G.; Hernandez, S.; Gomez-Castro, F. I.; Castro-Montoya, A. J., Dehydration of Bioethanol by Hybrid Process Liquid-Liquid Extraction/Extractive Distillation. Ind. Eng. Chem. Res. 2012, 51, 5847-5855.
[25] Chang, W. L.; Chien, I. L., Potential for Significant Energy-Saving via Hybrid Extraction-Distillation System: Design and Control of Separation Process for n-Propanol Dehydration. Ind. Eng. Chem. Res. 2016, 55, 11291-11304.
[26] Chen, Y. C.; Li, K. L.; Chen, C. L.; Chien, I. L., Design and Control of a Hybrid Extraction-Distillation System for the Separation of Pyridine and Water. Ind. Eng. Chem. Res. 2015, 54, 7715-7727.
[27] Yu, B. Y.; Huang, R.; Zhong, X. Y.; Lee, M. J.; Chien, I. L., Energy-Efficient Extraction Distillation Process for Separating Diluted Acetonitrile Water Mixture: Rigorous Design with Experimental Verification from Ternary Liquid Liquid Equilibrium Data. Ind. Eng. Chem. Res. 2017, 56, 15112-15121.
[28] Zhao, T. R.; Geng, X. L.; Qi, P. C.; Zhu, Z. Y.; Gao, J.; Wang, Y. L., Optimization of liquid-liquid extraction combined with either heterogeneous azeotropic distillation or extractive distillation processes to reduce energy consumption and carbon dioxide emissions. Chem. Eng. Res. Des. 2018, 132, 399-408.
[29] Dai, Y.; Zheng, F.; Xia, B.; Cui, P.; Wang, Y.; Gao, J., Application of Mixed Solvent To Achieve an Energy-Saving Hybrid Process Including Liquid–Liquid Extraction and Heterogeneous Azeotropic Distillation. Ind. Eng. Chem. Res. 2019, 58, 2379-2388.
[30] Yi, C. C.; Shen, W. F.; Chien, I. L., Design and control of an energy-efficient alternative process for the separation of methanol/toluene/water ternary azeotropic mixture. Sep. Purif. Technol. 2018, 207, 489-497.
[31] Ruckenstein, E.; Sun, F. M., Hydrophobic-hydrophilic composite membranes for the pervaporation of benzene-ethanol mixtures. J. Membr. Sci. 1995, 103, 271-283.
[32] Jain, A. K.; Srivastava, R. K.; Gupta, M. K.; Das, S. K., A novel technique in membrane separation processes: Electroosmotic separation of benzene in ethanol solution. J. Membr. Sci. 1993, 78, 53-61.
[33] Gutierrez-Sevillano, J. J.; Calero, S.; Krishna, R., Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC. Phys. Chem. Chem. Phys. 2015, 17, 20114-20124.
[34] Park, H. K.; Kim, D. S.; Cho, J., Simulation and Optimization Study on the Pressure-Swing Distillation of Ethanol-Benzene Azeotrope. Korean Chem. Eng. Res. 2015, 53, 450-456.
[35] Zhang, X.; Li, X.; Li, G.; Zhu, Z.; Wang, Y.; Xu, D., Determination of an optimum entrainer for extractive distillation based on an isovolatility curve at different pressures. Sep. Purif. Technol. 2018, 201, 79-95.
[36] Shi, P. Y.; Xu, D. M.; Ding, J. F.; Wu, J. Y.; Ma, Y. X.; Gao, J.; Wang, Y. L., Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water) via heterogeneous azeotropic distillation by energy-saving dividing-wall column: Process design and control strategies. Chem. Eng. Res. Des. 2018, 135, 52-66.
[37] Jia, B.; Wang, L. P.; Yan, M. M.; Liu, H.; Yu, Y. M.; Li, Q. S., Liquid-Liquid Equilibrium for Ternary Systems of Water+2,2,3,3-Tetrafluoro-1-propanol + Anisole/1-Octanol at 298.2, 308.2, and 318.2 K. J. Chem. Eng. Data 2018, 63, 3520-3526.
[38] Zhang, L.; Xu, D.; Gao, J.; Zhao, L.; Zhang, Z.; Li, C., Measurements and correlations of density, viscosity, and vapour-liquid equilibrium for fluoro alcohols. J. Chem. Thermodyn. 2016, 102, 155-163.
[39] Shih, Y.-J.; Putra, W. N.; Huang, Y.-H.; Tsai, J.-C., Mineralization and deflourization of 2,2,3,3-tetrafluoro-1-propanol (TFP) by UV/persulfate oxidation and sequential adsorption. Chemosphere 2012, 89, 1262-1266.
[40] Huang, S.-H.; Hung, W.-S.; Liaw, D.-J.; Lo, C.-H.; Chao, W.-C.; Hu, C.-C.; Li, C.-L.; Lee, K.-R.; Lai, J.-Y., Interfacially polymerized thin-film composite polyamide membranes: Effects of annealing processes on pervaporative dehydration of aqueous alcohol solutions. Sep. Purif. Technol. 2010, 72, 40-47.
[41] Kujawski, J. K.; Kujawski, W. M.; Sondej, H.; Jarzynka, K.; Kujawska, A.; Bryjak, M.; Rynkowska, E.; Knozowska, K.; Kujawa, J., Dewatering of 2,2,3,3-tetrafluoropropan-1-ol by hydrophilic pervaporation with poly(vinyl alcohol) based Pervap (TM) membranes. Sep. Purif. Technol. 2017, 174, 520-528.
[42] Cheremisinoff, P. N., Chapter 1 - Waste Reduction. In Waste Minimization and Cost Reduction for the Process Industries, Cheremisinoff, P. N., Ed. William Andrew Publishing: Park Ridge, NJ, 1995; pp 1-51.
[43] Pereiro, A. B.; Araujo, J. M. M.; Esperanca, J.; Marrucho, I. M.; Rebelo, L. P. N., Ionic liquids in separations of azeotropic systems - A review. J. Chem. Thermodyn. 2012, 46, 2-28.
[44] Suresh, J.; Beckman, E. J., Prediction of liquid-liquid equilibria in ternary mixtures from binary data. Fluid Phase Equilib. 1994, 99, 219-240.
[45] Wolfson, A.; Dlugy, C.; Shotland, Y., Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett. 2007, 5, 67-71.
[46] Aalim, H.; Belwal, T.; Jiang, L.; Huang, H.; Meng, X. H.; Luo, Z. S., Extraction optimization, antidiabetic and antiglycation potentials of aqueous glycerol extract from rice (Oryza sativa L.) bran. LWT-Food Sci. Technol. 2019, 103, 147-154.
[47] Gu, Y. L.; Jerome, F., Glycerol as a sustainable solvent for green chemistry. Green Chem. 2010, 12, 1127-1138.
[48] García-Herreros, P.; Gómez, J. M.; Gil, I. D.; Rodríguez, G., Optimization of the Design and Operation of an Extractive Distillation System for the Production of Fuel Grade Ethanol Using Glycerol as Entrainer. Ind. Eng. Chem. Res. 2011, 50, 3977-3985.
[49] Tan, H. W.; Aziz, A. R. A.; Aroua, M. K., Glycerol production and its applications as a raw material: A review. Renew. Sust. Energ. Rev. 2013, 27, 118-127.
[50] Navarrete-Contreras, S.; Sánchez-Ibarra, M.; Barroso-Muñoz, F. O.; Hernández, S.; Castro-Montoya, A. J., Use of glycerol as entrainer in the dehydration of bioethanol using extractive batch distillation: Simulation and experimental studies. Chem. Eng. Process. Process Intensif. 2014, 77, 38-41.
[51] McDonald, H. J., The System Ethyl Alcohol-Glycerol-Benzene at 25°. J. Am. Chem. Soc. 1940, 62, 3183-3184.
[52] Katayama, H.; Satoh, T., Liquid−Liquid Equilibria of Three Ternary Systems {Glycerol + Benzene + Methanol}, {Glycerol + Benzene + Ethanol}, and {Glycerol + Benzene + 1‑Propanol}. J. Chem. Eng. Data 2015, 60, 828-835.
[53] Katayama, H.; Satoh, T., Liquid-Liquid Equilibria of Three Ternary Systems: {Glycerol plus Benzene plus Methanol}, {Glycerol plus Benzene plus Ethanol}, and {Glycerol plus Benzene+1-Propanol}. J. Chem. Eng. Data 2015, 60, 828-835.
[54] Wang, Q.; Chen, G.; Han, S., Study on the vapor-liquid equilibria under pressure for binary systems. J. Fuel Chem. Technol. 1990, 18, 185-192.
[55] Gmehling, J.; Bölts, R., Azeotropic Data for Binary and Ternary Systems at Moderate Pressures. J. Chem. Eng. Data 1996, 41, 202-209.
[56] Arce, A.; Blanco, A.; Blanco, M.; Soto, A.; Vidal, I., Liquid-liquid equilibria of water + methanol + (MTBE or TAME) mixtures. Can. J. Chem. Eng. 1994, 72, 935-938.
[57] Ashour, I., Liquid−Liquid Equilibrium of MTBE + Ethanol + Water and MTBE + 1-Hexanol + Water over the Temperature Range of 288.15 to 308.15 K. J. Chem. Eng. Data 2005, 50, 113-118.
[58] Hwang, I.-C.; Park, S.-J.; Choi, J.-S., Liquid–liquid equilibria for the binary system of di-isopropyl ether (DIPE)+water in between 288.15 and 323.15K and the ternary systems of DIPE+water+C1–C4 alcohols at 298.15K. Fluid Phase Equilib. 2008, 269, 1-5.
[59] Pienaar, C.; Schwarz, C. E.; Knoetze, J. H.; Burger, A. J., Vapor-Liquid-Liquid Equilibria Measurements for the Dehydration of Ethanol, Isopropanol, and n-Propanol via Azeotropic Distillation Using DIPE and Isooctane as Entrainers. J. Chem. Eng. Data 2013, 58, 537-550.
[60] Shi, P.; Gao, Y.; Wu, J.; Xu, D.; Gao, J.; Ma, X.; Wang, Y., Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol+water): Isobaric vapour-liquid phase equilibrium measurements and azeotropic distillation. J. Chem. Thermodyn. 2017, 115, 19-26.
[61] Li, Q.; Jia, B.; Wang, L.; Yan, M.; Liu, T.; Yu, Y., Liquid-liquid equilibrium for ternary systems of water + 2,2,3,3-tetrafluoro-1-propanol + isopropyl ether/tert-butyl methyl ether at 298.2, 308.2 K. J. Chem. Thermodyn. 2018, 124, 32-37.
[62] Luyben, W. L., Principles and Case Studies of Simultaneous Design. Wiley: Hoboken, NJ, 2011.
[63] Luyben, W. L., Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Comput. Chem. Eng. 2013, 50, 1-7.
[64] Seider, W. D.; Seader, J. D.; Lewin, D. R.; Widagdo, S., Product and Process Design Principles Synthesis, Analysis, and Evaluation. Wiley: Hoboken, NJ, 2010.
[65] Yildirim, Ö.; Kiss, A. A.; Kenig, E. Y., Dividing wall columns in chemical process industry: A review on current activities. Sep. Purif. Technol. 2011, 80, 403-417.
[66] Wu, Y. C.; Lee, H.-Y.; Huang, H.-P.; Chien, I. L., Energy-Saving Dividing-Wall Column Design and Control for Heterogeneous Azeotropic Distillation Systems. Ind. Eng. Chem. Res. 2014, 53, 1537-1552.
[67] Weinfeld, J. A.; Owens, S. A.; Eldridge, R. B., Reactive dividing wall columns: A comprehensive review. Chem. Eng. Process. Process Intensif. 2018, 123, 20-33.
[68] Wu, Y. C.; Hsu, P. H.-C.; Chien, I. L., Critical Assessment of the Energy-Saving Potential of an Extractive Dividing-Wall Column. Ind. Eng. Chem. Res. 2013, 52, 5384-5399.
[69] Luyben, W. L., Distillation column pressure selection. Sep. Purif. Technol. 2016, 168, 62-67.
[70] Chen, Y.-C.; Yu, B.-Y.; Hsu, C.-C.; Chien, I. L., Comparison of heteroazeotropic and extractive distillation for the dehydration of propylene glycol methyl ether. Chem. Eng. Res. Des. 2016, 111, 184-195.
[71] You, X.; Rodriguez-Donis, I.; Gerbaud, V., Low pressure design for reducing energy cost of extractive distillation for separating diisopropyl ether and isopropyl alcohol. Chem. Eng. Res. Des. 2016, 109, 540-552.
[72] Tyreus, B. D.; Luyben, W. L., Tuning PI controllers for integrator/dead time processes. Ind. Eng. Chem. Res. 1992, 31, 2625-2628.
[73] Jin, B.; Zhao, H.; Zheng, C., Dynamic simulation for mode switching strategy in a conceptual 600MWe oxy-combustion pulverized-coal-fired boiler. Fuel 2014, 137, 135-144.
[74] Zhang, Z.; Zhang, Q.; Li, G.; Liu, M.; Gao, J., Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation. Chin. J. Chem. Eng. 2016, 24, 1584-1599.
[75] Taqvi, S. A.; Tufa, L. D.; Zabiri, H.; Mahadzir, S.; Maulud, A. S.; Uddin, F., Rigorous dynamic modelling and identification of distillation column using Aspen Plus. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC) 2017, 262-267.
[76] Patraşcu, I.; Bîldea, C. S.; Kiss, A. A., Eco-efficient butanol separation in the ABE fermentation process. Sep. Purif. Technol. 2017, 177, 49-61.
[77] Yang, X.; Xu, Q.; Zhao, C.; Li, K.; Lou, H. H., Pressure-Driven Dynamic Simulation for Improving the Performance of a Multistage Compression System during Plant Startup. Ind. Eng. Chem. Res. 2009, 48, 9195-9203.
[78] Ojasvi; Kaistha, N., Plantwide Control for Maximum Throughput Operation of an Ester Purification Process. Ind. Eng. Chem. Res. 2016, 55, 12242-12255.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74513-
dc.description.abstract本文探討複合式萃取-蒸餾系統應用於共沸混合物之節能設計與控制,與其它分離方法相比 (如共沸蒸餾、萃取蒸餾以及變壓蒸餾),溶劑萃取仍然是最優選的分離方法之一,它的特點在於分離原理是透過物質在不同溶劑中溶解度的差異,藉由選擇合適的溶劑使得溶液呈現不互溶之兩相液體,因此主要分離過程可以通過萃取塔來進行而無須消耗額外的能源,為該系統帶來巨大的經濟潛力。本文共介紹了兩類共沸混合物系統進行分析與討論,包括乙醇/苯以及四氟丙醇/水之系統,此二程序使用之熱力學模型不僅滿足三成分液-液平衡線之實驗數據,同時也能完整地預測出雙成分氣-液平衡之行為,顯示出其模擬程序之可信度。
在乙醇/苯之分離系統中選用甘油作為重溶劑,經由液-液平衡原理將溶液中之乙醇提取出來,由於萃取相必定殘留些許的苯,且乙醇並非為該蒸餾區域中之穩定節點,因此可延伸出兩種蒸餾序列,以獲得符合純度規格之乙醇與回收甘油以便重複使用,除此之外也考慮到重溶劑之特性,引入程序熱整合與真空系統於製程中,進一步降低整體之操作成本,而在品質控制上則是基於開環靈敏度測試與閉環靈敏度測試的結果,提出無須濃度控制器之整廠控制架構,並證實在此控制策略上可有效地排除進料干擾,維持兩產品之設計規格。
本文也針對四氟丙醇/水系統,探討以甲基叔丁基醚 (MTBE) 以及異丙醚 (DIPE) 作為輕溶劑之分離程序,藉由溶劑的夾帶將四氟丙醇引入至萃取相,而高純度的水則由萃餘相中離開,充分運用兩相之間的不互溶性來突破蒸餾邊界的限制,同時也考量到液-液萃取可行之密度差進行完整的經濟分析,除此之外,為了得到更加嚴謹之動態響應,利用分相槽之串聯設計模擬萃取塔單元,實現以壓力驅動模組進行動態討論,並分析流量驅動模組與壓力驅動模組之暫態響應,進一步探索複合式萃取-蒸餾系統之動態視野。
zh_TW
dc.description.abstractDesign and control of azeotropic mixture separation process by energy-saving hybrid extraction-distillation system was investigated in this thesis. Compared with other separation methods (i.e., azeotropic distillation, extractive distillation and pressure-swing distillation), solvent extraction remains to be one of the most preferable separation methods because the separation is achieved through their relative solubilities in two different immiscible liquid phases without energy usage. Thus, by utilizing a hybrid extraction-distillation separation process, huge economic potential is expectable with the finding of an effective solvent. In this work, two kinds of azeotropic mixture systems were analyzed and discussed, including ethanol/benzene and 2,2,3,3-tetrafluoro-1-propanol/water systems. The thermodynamic models used in both processes not only satisfy the experimental data of ternary liquid−liquid equilibrium, but also precisely predict the behavior of binary vapor-liquid equilibrium, showing the credibility of the simulated processes.
In the ethanol/benzene separation system, glycerol was selected as a heavy solvent, which is used to extract ethanol from benzene by the principle of liquid-liquid equilibrium. Since the extract phase inevitably contains some residual benzene and besides, ethanol is not a stable node in the operating distillation region, two alternative distillation sequences was proposed to obtain ethanol product at the purity specification and also purified glycerol for recycling back to the extraction column. Considering the nature of the heavy solvent, heat integration within process streams and operation in vacuum condition were taken into account for the design of the energy-saving cases. Furthermore, the quality control loops were established based on the results of open-loop and closed-loop sensitivity tests without the need of any online composition measurement. It was found that both ethanol and benzene products can be maintained at high purity despite having large feed disturbances.
For the separation of 2,2,3,3-tetrafluoro-1-propanol (TFP) and water, using methyl tert-butyl ether (MTBE) or diisopropyl ether (DIPE) as light solvent was proposed. By solvent entrainment, TFP is introduced into the extract phase, while high purity water is removed from the raffinate phase. This process fully utilized the heterogeneity of components to overcome the limitations of distillation boundary, and the feasible density difference of liquid-liquid extraction was also considered for complete economic analysis. Furthermore, in order to perform a more rigorous investigation on the dynamic simulations of this system, several decanters were put in series to simulate the extraction unit in the pressure-driven module. The transient responses of the flow-driven module and the pressure-driven module were analyzed respectively to further explore the dynamic horizon of the hybrid extraction-distillation system.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:40:02Z (GMT). No. of bitstreams: 1
ntu-108-R06524036-1.pdf: 5215150 bytes, checksum: 1af7ad7dda0c746f01202a3269a441b6 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XII
1. 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 複合式萃取-蒸餾系統 3
1.2.2 乙醇/苯分離系統 4
1.2.3 四氟丙醇/水分離系統 6
1.3 研究動機 9
1.4 組織架構 10
2. 熱力學模型 11
2.1 前言 11
2.2 乙醇/苯分離系統 13
2.2.1 熱力學資料收集 13
2.2.2 液-液平衡 (LLE) 之熱力學驗證 15
2.2.3 氣-液平衡 (VLE) 之熱力學驗證 17
2.3 四氟丙醇/水分離系統 20
2.3.1 熱力學資料收集 20
2.3.2 熱力學參數修正 24
2.3.3 液-液平衡 (LLE) 之熱力學驗證 27
2.3.4 氣-液平衡 (VLE) 之熱力學驗證 30
3. 穩態模擬與最適化分析 33
3.1 前言 33
3.2 乙醇/苯分離系統 34
3.2.1 複合式萃取-蒸餾系統之概念設計 34
3.2.2 最適化流程分析與討論 40
3.2.3 節能策略探討 50
3.2.3.1 節能策略1:單一程序流熱交換器 51
3.2.3.2 節能策略2:單一程序流熱交換器結合真空閃蒸槽 52
3.2.3.3 節能策略3:雙程序流熱交換器 54
3.2.3.4 節能策略4:雙程序流熱交換器結合真空閃蒸槽 56
3.2.4 結果與比較 57
3.3 四氟丙醇/水分離系統 60
3.3.1 複合式萃取-蒸餾系統之概念設計 60
3.3.2 最適化流程分析與討論 65
3.3.3 結果與比較 71
4. 動態模擬與控制策略 73
4.1 前言 73
4.2 乙醇/苯分離系統 74
4.2.1 基礎控制架構 74
4.2.2 品質控制之分析與策略 76
4.2.3 閉環干擾排除測試 82
4.3 四氟丙醇/水分離系統 85
4.3.1 基礎控制架構 85
4.3.2 品質控制之分析與策略 88
4.3.3 閉環干擾排除測試 92
5. 結論及未來展望 101
參考文獻 103
附錄 年度總成本計算公式 116
dc.language.isozh-TW
dc.subject萃取-蒸餾系統zh_TW
dc.subject溶劑萃取zh_TW
dc.subject共沸物分離zh_TW
dc.subject乙醇/苯分離zh_TW
dc.subject四氟乙醇脫水zh_TW
dc.subject程序設計zh_TW
dc.subject程序控制zh_TW
dc.subjectTFP dehydrationen
dc.subjectHybrid extraction-distillation systemen
dc.subjectAzeotropeen
dc.subjectProcess designen
dc.subjectProcess controlen
dc.subjectEthanol/benzene separationen
dc.subjectSolvent extractionen
dc.title複合式萃取-蒸餾系統之共沸混合物分離的節能設計與控制zh_TW
dc.titleDesign and Control of Azeotropic Separation
by Energy-Saving Hybrid Extraction-Distillation System
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳誠亮(Cheng-Liang Chen),吳哲夫(Jeffrey D. Ward),汪上曉(David Shan-Hill Wong),鄭西顯(Shi-Shang Jang)
dc.subject.keyword溶劑萃取,萃取-蒸餾系統,共沸物分離,程序設計,程序控制,乙醇/苯分離,四氟乙醇脫水,zh_TW
dc.subject.keywordSolvent extraction,Hybrid extraction-distillation system,Azeotrope,Process design,Process control,Ethanol/benzene separation,TFP dehydration,en
dc.relation.page120
dc.identifier.doi10.6342/NTU201902831
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
5.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved