請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7449
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳正平(Jen-Ping Chen) | |
dc.contributor.author | Tzeng | en |
dc.contributor.author | Min-Duan | zh_TW |
dc.date.accessioned | 2021-05-19T17:43:55Z | - |
dc.date.available | 2021-08-18 | |
dc.date.available | 2021-05-19T17:43:55Z | - |
dc.date.copyright | 2018-08-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-16 | |
dc.identifier.citation | Ballard, D. H., & Brown, C. M. (1982). Computer vision. Englewood Cliffs, NJ: Prentice-Hall.
Brooks, I., Saunders, C., Mitzeva, R., & Peck, S. (1997). The effect on thunderstorm charging of the rate of rime accretion by graupel. Atmos. Res.,43(3), 277-295. Fierro, A. O., Mansell, E. R., Macgorman, D. R., & Ziegler, C. L. (2013). The Implementation of an Explicit Charging and Discharge Lightning Scheme within the WRF-ARW Model: Benchmark Simulations of a Continental Squall Line, a Tropical Cyclone, and a Winter Storm. Mon. Wea. Rev.,141(7), 2390-2415. Gardiner, B., Lamb, D., Pitter, R. L., Hallett, J., & Saunders, C. P. (1985). Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm. J. Geophys. Res.,90(D4), 6079. Heiblum, R. H., Altaratz, O., Koren, I., Feingold, G., Kostinski, A. B., Khain, A. P., ... & Yaish, R. (2016). Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 2. Aerosol effects on warm convective clouds. Journal of Geophysical Research: Atmospheres, 121(11), 6356-6373. Helsdon, J. H., Wu, G., & Farley, R. D. (1992). An intracloud lightning parameterization scheme for a storm electrification model. J. Geophys. Res. Atmos., 97(D5), 5865-5884. Jayaratne, E., Saunders, C., & Hallett, J. (1983). Laboratory studies of the charging of soft-hail during ice crystal interactions. Q. J. Roy. Meteor. Soc.,109(461), 609-630. Krehbiel, P. R. (1986). The electrical structure of thunderstorms. The Earth’s electrical environment, 90-113. Macgorman, D. R., Straka, J. M., & Ziegler, C. L. (2001). A Lightning Parameterization for Numerical Cloud Models. J. Appl. Meteorol.,40(3), 459-478. Mansell, E. R., Macgorman, D. R., Ziegler, C. L., & Straka, J. M. (2002). Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res. Atmos.,107(D9). Mansell, E. R., MacGorman, D. R., Ziegler, C. L., & Straka, J. M. (2005). Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res. Atmos., 110(D12). Niemeyer, L., Pietronero, L., & Wiesmann, H. J. (1984). Fractal dimension of dielectric breakdown. Phys. Rev. Lett., 52(12), 1033. Pasko, V. P., Inan, U. S., & Bell, T. F. (1996). Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields. Geophys. Res. Lett., 23(6), 649-652. Ritenour, A. E., Morton, M. J., McManus, J. G., Barillo, D. J., & Cancio, L. C. (2008). Lightning injury: a review. Burns, 34(5), 585-594. Saunders, C. P., & Peck, S. L. (1998). Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res. Atmos.,103(D12), 13949-13956. Saunders, C. P. (2008). Charge separation mechanisms in clouds. In Planetary Atmospheric Electricity (pp. 335-353). Springer, New York, NY. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., ... & Powers, J. G. (2008). A Description of the Advanced Research WRF Version 3. Stolzenburg, M., W. D. Rust, and T. C. Marshall (1998), Electrical structure in thunderstorm convective regions: 3. Synthesis, J. Geophys. Res., 103(D12), 14097–14108. Tai, J. H., Wang, Y. M., Yang, M. J. & Lin, P. H. (2017) The preliminary study of applying intra-cloud lightning data to convective rain fall nowcasting. 大氣科學,45(1),43-56。 Takahashi, T. (1978). Riming electrification as a charge generation mechanism in thunderstorms. J. Atoms. Sci., 35(8), 1536-1548. Tsai, W., & Wu, C. (2017). The environment of aggregated deep convection. J. Adv. Model. Earth Sy.,9(5), 2061-2078. Wiesmann, H. J., & Zeller, H. R. (1986). A fractal model of dielectric breakdown and prebreakdown in solid dielectrics. J. Appl. Phys., 60(5), 1770-1773. Zhang, R., Tie, X., & Bond, D. W. (2003). Impacts of anthropogenic and natural NOx sources over the U.S. on tropospheric chemistry. P. Natl. Acad. Sci. U.S.A., 100(4), 1505-1509 Ziegler, C. L., Macgorman, D. R., Dye, J. E., & Ray, P. S. (1991). A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res.,96(D7), 12833. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7449 | - |
dc.description.abstract | 本研究利用天氣研究與預報模式(WRF)輔以大氣電學模組探討強降水與活躍閃電現象的關係。WRF中的電學模組對於放電過程僅以基本圓柱狀結構描述,不能有效區分雲對地與雲內閃電放電過程。本研究改進放電通路的設定方式,以區域標記法對高電場區域進行連通,容許複雜幾何通路的放電計算,並且區分雲對地與雲內閃電,進一步對於不同放電特性進行計算。模擬結果顯示新方案能有效改進閃電放電頻率過高的現象,且閃電極性與雷暴雲微物理過程之間具有強烈關聯性:雲對地正閃電好發於軟雹初生的對流前期,雲內閃電好發於具有較強上升氣流的對流成熟期,雲對地負閃電則伴隨層狀區降水發生於對流消散期。以上閃電與對流結構發展的關聯性有助於強降水事件的即時預警。 | zh_TW |
dc.description.abstract | This study investigated the relationship between intense precipitation and vigorous lightning flashes using the Weather Research and Forecasting model coupled with an atmospheric electricity module WRF_ELEC. The WRF_ELEC module can describe basic discharging process, but it cannot identify intra-cloud and cloud-to-ground flashes. This study improved the discharging algorithm of WRF_ELEC by applying the region-labeling method, which provides more detailed information on the electrical properties and geometry of lightning flashes. Simulation results show that the proposed method can significantly improve the lightning flash frequency. Also, it is able to reveal the polarity of lighting flash associated with the microphysical structure of thunderstorm. Positive cloud-to-ground flash is active at initial stage of thunderstorm when graupel formation becomes significant. Intra-cloud flash is active at the mature stage of thunderstorm when the updraft is strong enough to reach high levels. Negative cloud-to-ground flash is active during the dissipating stage of thunderstorm when precipitation results mainly from the outflow stratiform region. These important indicators are valuable for the nowcasting of heavy precipitation. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:43:55Z (GMT). No. of bitstreams: 1 ntu-107-R05229008-1.pdf: 11456384 bytes, checksum: e8a3a3c0ed65825fd26e7632b900f5d1 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 1. Introduction 1
2. Methodology 5 2.1 Charging/Discharging Physics 5 2.2 Region-Labeling Method 10 2.3 Total Lightning Location System (TLDS) 10 2.4 Model setup 11 3. Results 13 3.1 Simulated convective system 13 3.2 Flash Frequency 14 3.3 Microphysics Structure 15 3.4 Charges in Hydrometeor 17 3.5 Polarity of Flash 19 3.6 Effective Channel Radii 20 4. Summary and Future Work 21 References 25 Figrues 29 Table 44 Appendix 45 | |
dc.language.iso | en | |
dc.title | 以區域標記法進行閃電放電過程之模擬 | zh_TW |
dc.title | Simulation of Lightning Discharge with Region-Labeling Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳炳志(Bing-Chih Chen),周仲島(Jong?Dao Jou),楊明仁(Ming-Jen Yang) | |
dc.subject.keyword | 區域標記法,WRF模式,閃電模擬,非感應電荷分離機制,總體參數法, | zh_TW |
dc.subject.keyword | Region-labeling method,WRF model,lightning simulation,non-inductive charge separation mechanism,bulk parameterization, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU201803593 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 11.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。