Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74499
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方偉宏(Woei-horng Fang)
dc.contributor.authorNeng-An Chouen
dc.contributor.author周能安zh_TW
dc.date.accessioned2021-06-17T08:39:15Z-
dc.date.available2019-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-08
dc.identifier.citationBessman, M. J., I. R. Lehman, E. S. Simms and A. Kornberg (1957). 'ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID (DNA).' Federation Proceedings 16(1): 153-154.
Bonk, T. and A. Humeny (2001). 'MALDI-TOF-MS analysis of protein and DNA.' Neuroscientist 7(1): 6-12.
Brutlag, D. and A. Kornberg (1972). 'ENZYMATIC-SYNTHESIS OF DEOXYRIBONUCLEIC ACID .36. PROOF-READING FUNCTION FOR 3' - 5' EXONUCLEASE ACTIVITY IN DEOXYRIBONUCLEIC ACID POLYMERASES.' Journal of Biological Chemistry 247(1): 241-&.
Cowart, M., K. J. Gibson, D. J. Allen and S. J. Benkovic (1989). 'DNA SUBSTRATE STRUCTURAL REQUIREMENTS FOR THE EXONUCLEASE AND POLYMERASE ACTIVITIES OF PROCARYOTIC AND PHAGE DNA-POLYMERASES.' Biochemistry 28(5): 1975-1983.
Drake, J. W. (1991). 'A constant rate of spontaneous mutation in DNA-based microbes.' Proc Natl Acad Sci U S A 88(16): 7160-7164.
Duval, A., J. Gayet, X.-P. Zhou, B. Iacopetta, G. Thomas and R. Hamelin (1999). 'Frequent Frameshift Mutations of the <em>TCF-4</em> Gene in Colorectal Cancers with Microsatellite Instability.' Cancer Research 59(17): 4213.
Duval, A. and R. Hamelin (2002). 'Mutations at coding repeat sequences in mismatch repair-deficient human cancers: Toward a new concept of target genes for instability.' Cancer Research 62(9): 2447-2454.
Freese, E. (1959). 'THE DIFFERENCE BETWEEN SPONTANEOUS AND BASE-ANALOGUE INDUCED MUTATIONS OF PHAGE T4.' Proceedings of the National Academy of Sciences of the United States of America 45(4): 622-633.
Fu, D. J., K. Tang, A. Braun, D. Reuter, B. Darnhofer-Demar, D. P. Little, M. J. O'Donnell, C. R. Cantor and H. Koster (1998). 'Sequencing exons 5 to 8 of the p53 gene by MALDI-TOF mass spectrometry.' Nat Biotechnol 16(4): 381-384.
Garcia-Diaz, M. and T. A. Kunkel (2006). 'Mechanism of a genetic glissando: structural biology of indel mutations.' Trends in Biochemical Sciences 31(4): 206-214.
Greene, C. N. and S. JinksRobertson (1997). 'Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins.' Molecular and Cellular Biology 17(5): 2844-2850.
Griffin, T. J. and L. M. Smith (2000). 'Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry.' Trends Biotechnol 18(2): 77-84.
Gulston, M. and J. Knowland (1999). 'Illumination of human keratinocytes in the presence of the sunscreen ingredient Padimate-O and through an SPF-15 sunscreen reduces direct photodamage to DNA but increases strand breaks.' Mutat Res 444(1): 49-60.
Haff, L. A. and I. P. Smirnov (1997). 'Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry.' Genome Res 7(4): 378-388.
Joyce, C. M. and S. J. Benkovic (2004). 'DNA polymerase fidelity: Kinetics, structure, and checkpoints.' Biochemistry 43(45): 14317-14324.
Joyce, C. M., W. S. Kelley and N. D. F. Grindley (1982). 'NUCLEOTIDE-SEQUENCE OF THE ESCHERICHIA-COLI POLA GENE AND PRIMARY STRUCTURE OF DNA-POLYMERASE-I.' Journal of Biological Chemistry 257(4): 1958-1964.
Jurinke, C., D. van den Boom, A. Jacob, K. Tang, R. Wörl and H. Köster (1996). 'Analysis of Ligase Chain Reaction Products via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight–Mass Spectrometry.' Analytical biochemistry 237(2): 174-181.
Klenow, H. and I. Henningsen (1970). 'SELECTIVE ELIMINATION OF EXONUCLEASE ACTIVITY OF DEOXYRIBONUCLEIC ACID POLYMERASE FROM ESCHERICHIA-COLI-B BY LIMITED PROTEOLYSIS.' Proceedings of the National Academy of Sciences of the United States of America 65(1): 168-+.
Kokoska, R. J., K. Bebenek, F. Boudsocq, R. Woodgate and T. A. Kunkel (2002). 'Low fidelity DNA synthesis by a Y family DNA polymerase due to misalignment in the active site.' Journal of Biological Chemistry 277(22): 19633-19638.
Kokoska, R. J., S. D. McCulloch and T. A. Kunkel (2003). 'The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4.' Journal of Biological Chemistry 278(50): 50537-50545.
Koster, H., K. Tang, D. J. Fu, A. Braun, D. van den Boom, C. L. Smith, R. J. Cotter and C. R. Cantor (1996). 'A strategy for rapid and efficient DNA sequencing by mass spectrometry.' Nat Biotechnol 14(9): 1123-1128.
Kroutil, L. C., K. Register, K. Bebenek and T. A. Kunkel (1996). 'Exonucleolytic proofreading during replication of repetitive DNA.' Biochemistry 35(3): 1046-1053.
Kunkel, T. A. (2004). 'DNA replication fidelity.' Journal of Biological Chemistry 279(17): 16895-16898.
Kunkel, T. A. and R. Bebenek (2000). 'DNA replication fidelity.' Annual Review of Biochemistry 69: 497-529.
Kunkel, T. A., S. S. Patel and K. A. Johnson (1994). 'Error-prone replication of repeated DNA sequences by T7 DNA polymerase in the absence of its processivity subunit.' Proc Natl Acad Sci U S A 91(15): 6830-6834.
Lam, W. C., E. J. Van der Schans, L. C. Sowers and D. P. Millar (1999). 'Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis.' Biochemistry 38(9): 2661-2668.
Langen, H., P. Berndt, D. Roder, N. Cairns, G. Lubec and M. Fountoulakis (1999). 'Two-dimensional map of human brain proteins.' Electrophoresis 20(4-5): 907-916.
Ling, H., F. Boudsocq, R. Woodgate and W. Yang (2001). 'Crystal structure of a Y-family DNA polymerase in action: A mechanism for error-prone and lesion-bypass replication.' Cell 107(1): 91-102.
Ling, H., F. Boudsocq, R. Woodgate and W. Yang (2004). 'Snapshots of replication through an abasic lesion; structural basis for base substitutions and frameshifts.' Mol Cell 13(5): 751-762.
Marky, L. A. and K. J. Breslauer (1987). 'Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves.' Biopolymers 26(9): 1601-1620.
Minetti, C. A., D. P. Remeta, R. Dickstein and K. J. Breslauer (2010). 'Energetic signatures of single base bulges: thermodynamic consequences and biological implications.' Nucleic Acids Res 38(1): 97-116.
Moldovan, G. L., B. Pfander and S. Jentsch (2007). 'PCNA, the maestro of the replication fork.' Cell 129(4): 665-679.
Napolitano, R., R. Janel-Bintz, J. Wagner and R. P. P. Fuchs (2000). 'All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis.' Embo Journal 19(22): 6259-6265.
Nusslein, V., B. Otto, F. Bonhoeffer and H. Schaller (1971). 'FUNCTION OF DNA POLYMERASE III IN DNA REPLICATION.' Nature-New Biology 234(52): 285-+.
Ollis, D. L., P. Brick, R. Hamlin, N. G. Xuong and T. A. Steitz (1985). 'STRUCTURE OF LARGE FRAGMENT OF ESCHERICHIA-COLI DNA-POLYMERASE-I COMPLEXED WITH DTMP.' Nature 313(6005): 762-766.
Pearson, C. E., K. N. Edamura and J. D. Cleary (2005). 'Repeat instability: Mechanisms of dynamic mutations.' Nature Reviews Genetics 6(10): 729-742.
Reha-Krantz, L. J. (2010). 'DNA polymerase proofreading: Multiple roles maintain genome stability.' Biochim Biophys Acta 1804(5): 1049-1063.
Rubakhin, S. S., L. Li, T. P. Moroz and J. V. Sweedler (1999). 'Characterization of the Aplysia californica cerebral ganglion F cluster.' J Neurophysiol 81(3): 1251-1260.
Schaaper, R. M. (1993). 'Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli.' J Biol Chem 268(32): 23762-23765.
Su, K. Y., H. M. Lai, S. D. Goodman, W. Y. Hu, W. C. Cheng, L. I. Lin, Y. C. Yang and W. H. Fang (2018). 'Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay.' DNA Repair (Amst) 61: 63-75.
Tabor, S. and C. C. Richardson (1995). 'A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides.' Proceedings of the National Academy of Sciences 92(14): 6339.
Tippin, B., S. Kobayashi, J. G. Bertram and M. F. Goodman (2004). 'To slip or skip, visualizing frameshift mutation dynamics for error-prone DNA polymerases.' J Biol Chem 279(44): 45360-45368.
Tolson, D. A. and N. H. Nicholson (1998). 'Sequencing RNA by a combination of exonuclease digestion and uridine specific chemical cleavage using MALDI-TOF.' Nucleic Acids Res 26(2): 446-451.
Tran, H. T., J. D. Keen, M. Kricker, M. A. Resnick and D. A. Gordenin (1997). 'Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants.' Molecular and Cellular Biology 17(5): 2859-2865.
Tran, H. T., J. D. Keen, M. Kricker, M. A. Resnick and D. A. Gordenin (1997). 'Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants.' Mol Cell Biol 17(5): 2859-2865.
van der Woude, M. W. and A. J. Baumler (2004). 'Phase and antigenic variation in bacteria.' Clinical Microbiology Reviews 17(3): 581-+.
Wieser, A., L. Schneider, J. Jung and S. Schubert (2012). 'MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review).' Applied microbiology and biotechnology 93(3): 965-974.
Wong, I., S. S. Patel and K. A. Johnson (1991). 'An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics.' Biochemistry 30(2): 526-537.
Hanes, J. W. and K. A. Johnson (2008). 'Exonuclease removal of dideoxycytidine (zalcitabine) by the human mitochondrial DNA polymerase.' Antimicrobial Agents and Chemotherapy 52(1): 253-258.
Kroutil, L. C., K. Register, K. Bebenek and T. A. Kunkel (1996). 'Exonucleolytic proofreading during replication of repetitive DNA.' Biochemistry 35(3): 1046-1053.
Su, K. Y., H. M. Lai, S. D. Goodman, W. Y. Hu, W. C. Cheng, L. I. Lin, Y. C. Yang and W. H. Fang (2018). 'Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay.' DNA Repair (Amst) 61: 63-75.
Tabor, S. and C. C. Richardson (1995). 'A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides.' Proceedings of the National Academy of Sciences 92(14): 6339.
VanderHorn, P. B., M. C. Davis, J. J. Cunniff, C. Ruan, B. F. McArdle, S. B. Samols, J. Szasz, G. Hu, K. M. Hujer, S. T. Domke, S. R. Brummet, R. B. Moffett and C. W. Fuller (1997). 'Thermo sequenase(TM) DNA polymerase and T-acidophilum pyrophosphatase: New thermostable enzymes for DNA sequencing.' Biotechniques 22(4): 758-&.
林貴卿 (2018). 質譜儀應用於插入/缺失錯誤校正活性分析. 碩士, 國立臺灣大學.
Parsons, R., G. M. Li, M. J. Longley, W. H. Fang, N. Papadopoulos, J. Jen, A. Delachapelle, K. W. Kinzler, B. Vogelstein and P. Modrich (1993). 'HYPERMUTABILITY AND MISMATCH REPAIR DEFICIENCY IN RER+ TUMOR-CELLS.' Cell 75(6): 1227-1236.
賴虹名 (2017). 單一核苷酸延伸法和質譜儀應用於第一型DNA聚合酶校正活性分析. 碩士, 國立臺灣大學.
Su, K. Y., S. D. Goodman, H. M. Lai, R. S. Yen, W. Y. Hu, W. C. Cheng, L. I. Lin, Y. C. Yang and W. H. Fang (2018). 'Proofreading and DNA Repair Assay Using Single Nucleotide Extension and MALDI-TOF Mass Spectrometry Analysis.' Jove-Journal of Visualized Experiments(136).
Bebenek, K., C. M. Joyce, M. P. Fitzgerald and T. A. Kunkel (1990). 'THE FIDELITY OF DNA-SYNTHESIS CATALYZED BY DERIVATIVES OF ESCHERICHIA-COLI DNA-POLYMERASE-I.' Journal of Biological Chemistry 265(23): 13878-13887.
Derbyshire, V., P. S. Freemont, M. R. Sanderson, L. Beese, J. M. Friedman, C. M. Joyce and T. A. Steitz (1988). 'GENETIC AND CRYSTALLOGRAPHIC STUDIES OF THE 3',5'-EXONUCLEOLYTIC SITE OF DNA-POLYMERASE-I.' Science 240(4849): 199-201.
Bebenek, K. and T. A. Kunkel (1990). 'FRAMESHIFT ERRORS INITIATED BY NUCLEOTIDE MISINCORPORATION.' Proceedings of the National Academy of Sciences of the United States of America 87(13): 4946-4950.
Carver, T. E., R. A. Hochstrasser and D. P. Millar (1994). 'PROOFREADING DNA - RECOGNITION OF ABERRANT DNA TERMINI BY THE KLENOW FRAGMENT OF DNA-POLYMERASE-I.' Proceedings of the National Academy of Sciences of the United States of America 91(22): 10670-10674.
Bebenek, K., C. M. Joyce, M. P. Fitzgerald and T. A. Kunkel (1990). 'THE FIDELITY OF DNA-SYNTHESIS CATALYZED BY DERIVATIVES OF ESCHERICHIA-COLI DNA-POLYMERASE-I.' Journal of Biological Chemistry 265(23): 13878-13887.
Derbyshire, V., P. S. Freemont, M. R. Sanderson, L. Beese, J. M. Friedman, C. M. Joyce and T. A. Steitz (1988). 'GENETIC AND CRYSTALLOGRAPHIC STUDIES OF THE 3',5'-EXONUCLEOLYTIC SITE OF DNA-POLYMERASE-I.' Science 240(4849): 199-201.
Jo, Y. S., M. R. Choi, S. Y. Song, M. S. Kim, N. J. Yoo and S. H. Lee (2016). 'Frameshift Mutations of HSPA4 and MED13 in Gastric and Colorectal Cancers.' Pathology & Oncology Research 22(4): 769-772.
Turajlic, S., K. Litchfield, H. Xu, R. Rosenthal, N. McGranahan, J. L. Reading, Y. N. S. Wong, A. Rowan, N. Kanu, M. Al Bakir, T. Chambers, R. Salgado, P. Savas, S. Loi, N. J. Birkbak, L. Sansregret, M. Gore, J. Larkin, S. A. Quezada and C. Swanton (2017). 'Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis.' Lancet Oncology 18(8): 1009-1021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74499-
dc.description.abstract插入/缺失突變(insertion/deletion mutation)是DNA複製時常見的點突變之一,發生的原因是因為重複序列DNA在複製過程中容易出現滑動,使得複製產物在重複序列的地方會比模板股增加幾個核苷酸或減少幾個核苷酸,這種情形就是插入/缺失錯誤,在複製過程中插入/缺失錯誤的出現可以經由DNA聚合酶的3'端至5'端外切酶活性進行校正,在先前文獻指出,當DNA發生插入/缺失突變時,DNA聚合酶的校正效能會因為loop out形成位置的不同,而受到影響,也就是loop out出現的位置距離引子股3'端比較遠時,DNA聚合酶會比較傾向於繼續延伸引子股而非進行校正。另外引子股的末端有正確的雙股配對時,會使末端結構比較穩定,可能因此被聚合酶視為正確的受質,而繼續延伸。為了要瞭解DNA聚合酶在插入/缺失突變的生成及校正所扮演的角色,本研究利用MALDI-TOF質譜儀平台來分析Klenow fragment (KF)進行核酸複製時可能產生的插入/缺失錯誤以及校正能力。
首先探DNA討聚合酶在重複A.T序列上產生複製錯誤的情形,以校正能力缺失的Klenow fragment (3'→5' exo-)及分別以末端帶有兩個重複A.T序列及十個重複A.T序列的DNA受質在只加入dATP情形下進行反應,結果發現在末端帶有兩個重複A.T的組別,僅出現少量延伸訊號,但末端帶有十個重複A.T的組別則引子股全部都生成延伸產物,之後分別對末端帶有不同數目A的引子股進行聚合反應,結果發現當重複A.T的數目越多,延伸訊號的比例也會越高,由此結果能知道重複A.T序列的長度確實會影響插入/缺失錯誤的產生,最後再以帶有四、六、八、十個重複A.T序列的組別進行動力學實驗,結果發現有較長重複序列的組別在各個時間點都有較高的延伸訊號,而且在帶有十個重複序列的組別一開始的反應初速度就明顯高過其他組別。
再來是探討DNA聚合酶對插入/缺失錯誤的校正反應,實驗是設計在不同位置上帶有固定位置單一核苷酸插入/缺失錯誤,和Klenow fragment及dATP、dTTP、dGTP及ddCTP進行反應,反應後以鹽酸終止反應,再用質譜儀分析結果以了解校正效能。從實驗結果中發現插入/缺失發生在引子股末端倒數四個以內時,都能有效校正,當插入/缺失發生在引子股末端倒數第五個核苷酸時,則會出現一部分延伸訊號及一部分校正訊號,但如果錯誤發生在倒數第五個核苷酸以外時,則只有延伸訊號出現。
最後本研究也對DNA聚合酶對於發生在重複序列上插入/缺失錯誤的校正情形進行探討,分別設計帶有9~14個重複A.T序列的DNA 受質,也就是slippage strand,且上面帶有缺失錯誤,加入Klenow fragment及dATP、dCTP及dGTP進行反應。結果卻發現在帶有9~14個重複序列上的插入/缺失錯誤都能被校正。
zh_TW
dc.description.abstractInsertion/deletion mutation is one of common point mutation during DNA replication . The occurrence of insertion/deletion mutation was thought due to repeated sequence being prone to slippage during DNA replication, so that the replicated product will gain or loss a few nucleotides.i.e. insertion/deletion errors. The insertion/deletion errors in replication can be corrected by the proofreading activity of the polymerase. Previous in vitro DNA synthesis study using template with simple repetitive sequences found that the proofreading efficiency of the polymerase is affected by the loop out position within repeat sequence, being the further the loop out occurs far away from the 3' end, the less extend to proofread. It was suggested insertion/deletion loops embed upstream of the primer may not be proofread since the matched paring of primer template junction tend to be stabilized and can be successfully extended by DNA polymerase. In order to provide direct evidence for DNA polymerase producing insertion/deletion loop during slipped DNA replication as well as insertion/deletion loop proofreading efficiency of insertion/deletion loop, this study employed proofreading proficient and deficient Klenow polymerase to react with repeat sequences containing oligonucleotides. The resulting products were analyzed by MALDI-TOF MS assay.
This study designed DNA substrates with different number (2 to 10) of repeating A.T pairs in primer-template junction. In reactions using proofreading deficient Klenow fragment (3'→5' exo-) and imbalanced dNTPs pool containing only dATP , this study found that mis-incorporation of A occurred; and the higher number of A.T repeat the greater extend of mis-incorporation in 20 min. Kinetic analysis was performed to confirm above reactions. In comparison, no mis-incorporation were found in the reaction using proofreading proficient klenow as well as reactions using imbalanced dNTPs pool containing dCTP, dTTP, dGTP but not dATP.
We then examined proofreading of the Klenow fragment (KF) with DNA containing single nucleotide insertion/deletion loop at different position. Followed by MALDI-TOF MS analysis, the proofreading at the insertion/deletion site is identified by the mass change of the primer. The result indicated that insertion/deletion error within 4 nucleotides upstream from primer terminus could be proofread effectively.
We further tested the proofreading efficiency to insertion/deletion loop in slippage strand using DNA substrates containing insertion/deletion loop in nine to fourteen repeating A.T pairs sequence. In reactions using proofreading proficient klenow fragment in the presence of dATP, dCTP and dGTP, we found that the insertion/deletion error substrate with nine to fourteen repeating A.T pairs can be proofread.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:39:15Z (GMT). No. of bitstreams: 1
ntu-108-R06424023-1.pdf: 2515785 bytes, checksum: 4a6c5a35c6d4871aac18263a1b9dfb70 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract IV
圖目次 VIII
表目次 IX
附錄目次 X
縮寫表 XI
第一章 研究背景 1
1.1 點突變 1
1.2 插入/缺失突變 2
1.3 插入/缺失錯誤的修復路徑 3
1.4 基質協助雷射去吸附離子化-飛行時間質譜儀 5
1.5 DNA插入/缺失錯誤校正分析方法 7
1.6 第一型DNA聚合酶 8
1.7 研究動機 10
第二章 材料與方法 12
2.1 DNA序列 12
2.2 酵素 14
2.3 核苷酸 14
2.4 聚合及校正能力試驗 14
2.5 基質協助雷射去吸附離子化-飛行時間質譜儀 15
2.6 產物百分比計算 16
第三章 結果 17
3.1 短重複核苷序列之聚和能力分析 17
3.2 長重複核苷序列之聚和能力分析 17
3.3 重複序列之鹼基選擇性分析 18
3.4 重複序列之聚和能力探討 19
3.5 聚合酶對於不同長度重複核苷序列之聚和能力探討 20
3.6 固定位置單一核苷酸插入錯誤之校正能力分析 21
3.7 固定位置單一核苷酸缺失錯誤之校正能力分析 22
3.8 重複序列上缺失錯誤之校正能力分析 23
第四章 討論 25
附錄 44
參考文獻 53
dc.language.isozh-TW
dc.subject插入/缺失錯誤zh_TW
dc.subjectDNA聚合?校正活性反應zh_TW
dc.subjectKlenow fragmentzh_TW
dc.subjectDNA聚合?聚合活性反應zh_TW
dc.subject質譜儀zh_TW
dc.subjectDNA滑動zh_TW
dc.subjectMALDI-TOF MSen
dc.subjectstrand slippageen
dc.subjectproofreading activityen
dc.subjectpolymerization activityen
dc.subjectKlenow Fragmenten
dc.subjectinsertion/deletion loopen
dc.title重複序列核酸複製之插入/缺失錯誤校正活性分析zh_TW
dc.titleProofreading of insertion/deletion error in slipped strand DNA replicationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許濤,楊雅倩,蘇剛毅
dc.subject.keyword插入/缺失錯誤,DNA滑動,DNA聚合?校正活性反應,DNA聚合?聚合活性反應,Klenow fragment,質譜儀,zh_TW
dc.subject.keywordinsertion/deletion loop,strand slippage,proofreading activity,polymerization activity,Klenow Fragment,MALDI-TOF MS,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201902626
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved