Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74496
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈
dc.contributor.authorLi-Cheng Hoen
dc.contributor.author何禮丞zh_TW
dc.date.accessioned2021-06-17T08:39:06Z-
dc.date.available2021-08-13
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-08
dc.identifier.citation呂奇翰。2018。調控聚(3,4-乙烯二氧噻吩)傳導層電鍍製程以提升固態式離子選擇電極長時間電位穩定性。碩士論文。台北:國立台灣大學生物產業機電工程學系研究所。
陳裕夫。2017。透過調控聚苯胺傳導層之疏水性提升固態離子選擇電極感測性能。碩士論文。台北:國立台灣大學生物產業機電工程學系研究所。
Ammann, D., Lanter, F., Steiner, R. A., Schulthess, P., Shijo, Y., & Simon, W. (1981). Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies. Analytical chemistry, 53(14), 2267-2269.
Bandodkar, A. J., Hung, V. W., Jia, W., Valdés-Ramírez, G., Windmiller, J. R., Martinez, A. G., . . . Wang, J. (2013). Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst, 138(1), 123-128.
Bobacka, J. (1999). Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Analytical chemistry, 71(21), 4932-4937.
Bobacka, J., Maj-Zurawska, M., & Lewenstam, A. (2003). Carbonate ion-selective electrode with reduced interference from salicylate. Biosensors and Bioelectronics, 18(2-3), 245-253.
Bodor, S., Zook, J. M., Lindner, E., Tóth, K., & Gyurcsányi, R. E. (2008). Electrochemical methods for the determination of the diffusion coefficient of ionophores and ionophore–ion complexes in plasticized PVC membranes. Analyst, 133(5), 635-642.
Buck, R., Rondinini, S., Covington, A., Baucke, F., Brett, C. M., Camoes, M., . . . Pratt, K. (2002). Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002). Pure and Applied Chemistry, 74(11), 2169-2200.
Bühlmann, P., Pretsch, E., & Bakker, E. (1998). Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chemical reviews, 98(4), 1593-1688.
Cattrall, R., & Freiser, H. (1971). Coated wire ion-selective electrodes. Analytical chemistry, 43(13), 1905-1906.
Choi, Y. S., Lvova, L., Shin, J. H., Oh, S. H., Lee, C. S., Kim, B. H., . . . Nam, H. (2002). Determination of oceanic carbon dioxide using a carbonate-selective electrode. Analytical chemistry, 74(10), 2435-2440.
Ciosek, P., Zawadzki, K., Łopacińska, J., Skolimowski, M., Bembnowicz, P., Golonka, L., . . . Wróblewski, W. (2009). Monitoring of cell cultures with LTCC microelectrode array. Analytical and bioanalytical chemistry, 393(8), 2029-2038.
Cremer, M. (1906). Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten: R. Oldenbourg.
Crespo, G. A., Gugsa, D., Macho, S., & Rius, F. X. (2009). Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Analytical and bioanalytical chemistry, 395(7), 2371-2376.
De Marco, R., Veder, J.-P., Clarke, G., Nelson, A., Prince, K., Pretsch, E., & Bakker, E. (2008). Evidence of a water layer in solid-contact polymeric ion sensors. Physical Chemistry Chemical Physics, 10(1), 73-76.
Fibbioli, M., Morf, W. E., Badertscher, M., de Rooij, N. F., & Pretsch, E. (2000). Potential drifts of solid‐contacted ion‐selective electrodes due to zero‐current ion fluxes through the sensor membrane. Electroanalysis, 12(16), 1286-1292.
Frant, M. S. (1997). Where did ion selective electrodes come from? The story of their development and commercialization. Journal of chemical education, 74(2), 159.
Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., . . . Kiriya, D. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509.
Guzinski, M., Jarvis, J. M., D’Orazio, P., Izadyar, A., Pendley, B. D., & Lindner, E. (2017). Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate “Water Layer” Test. Analytical chemistry, 89(16), 8468-8475.
Han, J.-Y., Lee, J., Lee, Y.-G., & Jang, A. (2017). Solid-state Ion Selective Lab Chip Sensor for On-site Measurement of Orthophosphate in Small Volumes of Liquid. Journal of Coastal Research, 79(sp1), 50-54.
Herman, H. B., & Rechnitz, G. A. (1975). Preparation and properties of a carbonate ion-selective membrane electrode. Analytica chimica acta, 76(1), 155-164.
Hu, J., Stein, A., & Bühlmann, P. (2016). Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends in Analytical Chemistry, 76, 102-114.
Ishimatsu, R., Izadyar, A., Kabagambe, B., Kim, Y., Kim, J., & Amemiya, S. (2011). Electrochemical mechanism of ion–ionophore recognition at plasticized polymer membrane/water interfaces. Journal of the American Chemical Society, 133(40), 16300-16308.
Jaworska, E., Kisiel, A., Michalska, A., & Maksymiuk, K. (2017). Electrochemical Properties of Polypyrrole Nanoparticles–The Role of Doping Ions and Synthesis Medium. Electroanalysis.
Kisiel, A., Michalska, A., & Maksymiuk, K. (2016). Bilayer membranes for ion-selective electrodes. Journal of Electroanalytical Chemistry, 766, 128-134.
Lee, H. J., Yoon, I. J., Yoo, C. L., Pyun, H.-J., Cha, G. S., & Nam, H. (2000). Potentiometric evaluation of solvent polymeric carbonate-selective membranes based on molecular tweezer-type neutral carriers. Analytical chemistry, 72(19), 4694-4699.
Liang, R., Yin, T., & Qin, W. (2015). A simple approach for fabricating solid-contact ion-selective electrodes using nanomaterials as transducers. Analytica chimica acta, 853, 291-296.
Lindner, E., & Gyurcsányi, R. E. (2009). Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. Journal of Solid State Electrochemistry, 13(1), 51-68.
Lindner, E., Gyurcsányi, R. E., & Buck, R. P. (1999). Tailored transport through ion‐selective membranes for improved detection limits and selectivity coefficients. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 11(10‐11), 695-702.
Liu, C.-X., Lang, W.-Z., Shi, B.-B., & Guo, Y.-J. (2013). Fabrication of ordered honeycomb porous polyvinyl chloride (PVC) films by breath figures method. Materials Letters, 107, 53-55.
Mendecki, L., Fayose, T., Stockmal, K. A., Wei, J., Granados-Focil, S., McGraw, C. M., & Radu, A. (2015). Robust and ultrasensitive polymer membrane-based carbonate-selective electrodes. Analytical chemistry, 87(15), 7515-7518.
Meyerhoff, M. E., Pretsch, E., Welti, D. H., & Simon, W. (1987). Role of trifluoroacetophenone solvents and quaternary ammonium salts in carbonate-selective liquid membrane electrodes. Analytical chemistry, 59(1), 144-150.
Michalska, A., Hulanicki, A., & Lewenstam, A. (1994). All solid-state hydrogen ion-selective electrode based on a conducting poly (pyrrole) solid contact. Analyst, 119(11), 2417-2420.
Mohammad-Rezaei, R., Soroodian, S., & Esmaeili, G. (2019). Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor. Journal of Materials Science: Materials in Electronics, 30(3), 1998-2005.
Morf, W. E., Badertscher, M., Zwickl, T., de Rooij, N. F., & Pretsch, E. (1999). Effects of ion transport on the potential response of ionophore-based membrane electrodes: a theoretical approach. The Journal of Physical Chemistry B, 103(51), 11346-11356.
Morf, W. E., Pretsch, E., & De Rooij, N. F. (2009). Memory effects of ion-selective electrodes: Theory and computer simulation of the time-dependent potential response to multiple sample changes. Journal of Electroanalytical Chemistry, 633(1), 137-145.
Paczosa-Bator, B., Cabaj, L., Piech, R., & Skupień, K. (2013). Potentiometric sensors with carbon black supporting platinum nanoparticles. Analytical chemistry, 85(21), 10255-10261.
Radu, A., Anastasova-Ivanova, S., Paczosa-Bator, B., Danielewski, M., Bobacka, J., Lewenstam, A., & Diamond, D. (2010). Diagnostic of functionality of polymer membrane–based ion selective electrodes by impedance spectroscopy. Analytical Methods, 2(10), 1490-1498.
Rivnay, J., Inal, S., Collins, B. A., Sessolo, M., Stavrinidou, E., Strakosas, X., . . . Malliaras, G. G. (2016). Structural control of mixed ionic and electronic transport in conducting polymers. Nature communications, 7, 11287.
Sokalski, T., Ceresa, A., Fibbioli, M., Zwickl, T., Bakker, E., & Pretsch, E. (1999). Lowering the detection limit of solvent polymeric ion-selective membrane electrodes. 2. Influence of composition of sample and internal electrolyte solution. Analytical chemistry, 71(6), 1210-1214.
Sokalski, T., Ceresa, A., Zwickl, T., & Pretsch, E. (1997). Large improvement of the lower detection limit of ion-selective polymer membrane electrodes. Journal of the American Chemical Society, 119(46), 11347-11348.
Solovieva, S., Karnaukh, M., Panchuk, V., Andreev, E., Kartsova, L., Bessonova, E., . . . Jahatspanian, I. (2019). Potentiometric multisensor system as a possible simple tool for non-invasive prostate cancer diagnostics through urine analysis. Sensors and Actuators B: Chemical.
Song, F., Ha, J., Park, B., Kwak, T. H., Kim, I. T., Nam, H., & Cha, G. S. (2002). All-solid-state carbonate-selective electrode based on a molecular tweezer-type neutral carrier with solvent-soluble conducting polymer solid contact. Talanta, 57(2), 263-270.
Štefanac, Z., & Simon, W. (1967). Ion specific electrochemical behavior of macrotetrolides in membranes. Microchemical Journal, 12(1), 125-132.
Vázquez, M., Bobacka, J., Ivaska, A., & Lewenstam, A. (2002). Influence of oxygen and carbon dioxide on the electrochemical stability of poly (3, 4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 82(1), 7-13.
Vigassy, T., Gyurcsányi, R. E., & Pretsch, E. (2003). Influence of incorporated lipophilic particles on ion fluxes through polymeric ion‐selective membranes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 15(5‐6), 375-382.
Wang, S., Wu, Y., Gu, Y., Li, T., Luo, H., Li, L.-H., . . . Cao, Y. (2017). Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode. Analytical chemistry, 89(19), 10224-10231.
Wise, W. (1973). Bicarbonate ion sensitive electrode: Google Patents.
Xu, H., Pan, Y., Wang, Y., Li, G., Chen, Y., & Ye, Y. (2012). An all-solid-state screen-printed carbon paste reference electrode based on poly (3, 4-ethylenedioxythiophene) as solid contact transducer. Measurement Science and Technology, 23(12), 125101.
Yin, T., Pan, D., & Qin, W. (2014). All-solid-state polymeric membrane ion-selective miniaturized electrodes based on a nanoporous gold film as solid contact. Analytical chemistry, 86(22), 11038-11044.
Yuan, D., Anthis, A. H., Ghahraman Afshar, M., Pankratova, N., Cuartero, M., Crespo, G. n. A., & Bakker, E. (2015). All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples. Analytical chemistry, 87(17), 8640-8645.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74496-
dc.description.abstract器官晶片作為取代動物實驗的前瞻技術而備受矚目。為了有效追蹤細胞代謝所造成的環境變化,感測器勢必須微型化。固態式離子選擇電極提供了一監測pH值及二氧化碳濃度的方式,然其仍受限於電位不穩定及記憶效應。是故,本研究旨在開發平面固態式的氫離子及碳酸根離子選擇電極,並藉由調控聚(3,4-乙烯二氧噻吩) (poly(3,4-ethylenedioxythylphene, PEDOT))離子電子傳導層的相對離子種類及離子選擇薄膜的製程參數,改善離子選擇電極的靈敏度、電位穩定性及重複性。離子電子訊號轉換效率取決於PEDOT的氧化還原反應,因此PEDOT需具備高化學穩定性及贗電容值。定電位電鍍的條件下,以BF4-作為相對離子的PEDOT滿足此條件。以其製備的氫離子選擇電極與碳酸根離子選擇電極的性能表現為最佳,其靈敏度分別為59.16 mV/pH、24.37 mV/decade,以及電位穩定性分別為7.12 μV/s、14.08 μV/s。氫離子選擇電極的離子選擇薄膜厚度增加可舒緩離子流效應並降低記憶效應影響,因此離子選擇薄膜以10μL的量滴覆三次的組別電位重複性為最佳。而碳酸根離子選擇電極的離子選擇薄膜厚度不影響電位重複性,並考量靈敏度與電位穩定性,其以10μL的量單次滴覆的組別表現最佳。改良製程參數後的氫離子與碳酸根離子選擇電極置於1x PBS溶液下進行重複量測 (n = 5)的量測電位標準差分別為1.06 mV及1.33 mV。最後,將氫離子與碳酸根離子選擇電極於細胞培養基感測的結果顯示,兩電極於含有血清的溶液中也可維持高度的電位穩定性並且能量測到一週的細胞培養基離子濃度變化。zh_TW
dc.description.abstractOrgans-on-a-chip is attracting for the advanced technology as an alternative to the animal models. To monitoring the environmental changes caused by cellular metabolism effectively, the sensor must be miniaturized. Solid-state ion-selective electrodes (SS-ISEs) provide a way to measure pH and dissolved carbon dioxide system, but are still limited by the potential instability and the memory effect. In this study, we used poly(3,4-ethylenedioxythiophene) (PEDOT) as ion-to-electron transducer (IET) to construct the solid-state pH electrode and solid-state carbonate-selective electrode. We aimed to improve the potential stability and potential repeatability of SS-ISEs by tuning the counter ion of IET and the casting method of ion-selective membrane (ISM). Firstly, the efficiency of signal transfer between ion and electron is related to the redox reaction of PEDOT. For this purpose, high electrochemical stability and high pseudocapacitance of PEDOT is needed. Under the constant potential electrodeposition method, PEDOT with BF4- ion met the requirement. The sensitivity and potential stability of hydrogen-ISE and the carbonate-ISE were 59.16 mV/pH, 7.12 μV/s and 24.37 mV/decade, 14.08 μV/s, respectively. Secondly, increasing in the thickness of ISM of hydrogen ISE could reduce ionic flux and the memory effect, so multiple times drop coating of ISM was optimal. But the carbonate-ISE was opposite, ISE with single drop of ISM could have best sensitivity, potential stability and the potential repeatability, so single time drop coating of ISM was optimal. After tuning the parameters of the manufacturing process, the hydrogen-ISE and carbonate-ISE were placed in a multi-ion solution for repeated measurement (n = 5) with excellent potential repeatability, and the values were 1.06 mV and 1.33 mV, respectively. Finally, the performance of the hydrogen-ISE and carbonate-ISE in the cell culture medium showed that the two electrodes could maintain a high potential stability in the serum-containing solution and could measure the difference in concentration of the cell culture medium for different days.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:39:06Z (GMT). No. of bitstreams: 1
ntu-108-R06631007-1.pdf: 33181343 bytes, checksum: 974fc89fd59b71eda0f2feba83d0f094 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 IX
符號說明 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻探討 5
2.1 離子選擇電極 5
2.1.1 離子選擇電極之發展 5
2.1.2 離子選擇電極之感測系統 11
2.2 離子電子傳導層 13
2.2.1 離子電子傳導層傳導機制 16
2.2.2 離子電子傳導層製程調控 17
2.3 離子選擇電極之離子流效應 18
2.3.1 離子選擇電極之水層效應 18
2.3.2 離子選擇電極之記憶效應 20
第三章 研究材料與方法 21
3.1 實驗儀器、設備與藥品 21
3.1.1 實驗儀器與設備 21
3.1.2 實驗藥品及其規格 22
3.2 固態式離子選擇電極陣列製作 24
3.2.1 微製程金電極製作 24
3.2.2 離子電子傳導層製作 26
3.2.3 離子選擇薄膜製備 26
3.3 PEDOT離子電子傳導層分析 29
3.3.1 掃描式電子顯微鏡 29
3.3.2 接觸角分析 29
3.3.3 循環伏安法分析 29
3.3.4 雷射共軛焦表面分析儀 29
3.4 離子選擇薄膜分析 30
3.4.1 掃描式電子顯微鏡 30
3.5 離子選擇電極感測性能分析 30
3.5.1 開環路電位量測 30
3.5.2 電化學阻抗頻譜分析 30
3.5.3 離子流效應分析 31
3.6 數據分析方式 32
3.6.1 記憶效應 32
3.6.2 電位重複性 32
第四章 結果與討論 33
4.1 離子電子傳導層相對離子種類探討 33
4.1.1 PEDOT離子電子傳導層分析 33
4.1.2 離子選擇電極表現性分析 42
4.1.3 小結 52
4.2 離子選擇薄膜之記憶效應探討 53
4.2.1 掃描式電子顯微鏡分析 53
4.2.2 離子選擇電極表現性分析 58
4.2.3 小結 73
4.3 離子選擇電極之性能測試 74
4.3.1 離子強度對校正曲線影響分析 74
4.3.2 離子選擇電極重複性測試 77
4.3.3 小結 80
4.4 離子選擇電極應用於細胞培養基離子濃度感測 81
4.4.1 細胞培養基離子濃度感測 81
4.4.2 小結 85
第五章 結論與未來展望 86
5.1 結論 86
5.2 未來展望 88
參考文獻 89
附錄 94
dc.language.isozh-TW
dc.subjectPEDOTzh_TW
dc.subject細胞培養基離子濃度zh_TW
dc.subject金電極zh_TW
dc.subject固態式pH電極zh_TW
dc.subject固態式碳酸根離子選擇電極zh_TW
dc.subjectcellular culture mediumen
dc.subjectpoly(3en
dc.subject4-ethylenedioxythiophene)en
dc.subjectsolid-state hydrogen-selective electrodeen
dc.subjectsolid-state carbonate-selective electrodeen
dc.subjectgold electrodeen
dc.title"以聚(3,4-乙烯二氧噻吩)修飾黃金電極製備固態pH與碳酸根離子感測試片之研究"zh_TW
dc.titleFabrication of Solid-state pH and Carbonate
Ion-sensing Chips based on
Poly(3,4-ethylenedioxythiophene)-modified Au Electrodes
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林正嵐,林致廷,廖英志,謝博全
dc.subject.keyword金電極,PEDOT,固態式pH電極,固態式碳酸根離子選擇電極,細胞培養基離子濃度,zh_TW
dc.subject.keywordgold electrode,poly(3,4-ethylenedioxythiophene),solid-state hydrogen-selective electrode,solid-state carbonate-selective electrode,cellular culture medium,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201901797
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
32.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved