請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74494
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何佳安(Ja-an Annie Ho) | |
dc.contributor.author | Yao-Nien Chung | en |
dc.contributor.author | 鍾燿年 | zh_TW |
dc.date.accessioned | 2021-06-17T08:39:00Z | - |
dc.date.available | 2021-08-13 | |
dc.date.copyright | 2019-08-13 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-08 | |
dc.identifier.citation | 參考文獻
1.Hanhineva K, Soininen P, Anttonen MJ, Kokko H, 2009, a NMR and UPLC-qTOF-MS/MS Characterisation of Novel Phenylethanol Derivatives of Phenylpropanoid Glucosides from the Leaves of Strawberry (Fragaria ¥ ananassa cv. Jonsok). Phytochem Anal, 20, 353-364 2.Oszmianski J, Wojdy A, Gorzelany J, Kapusta I, 2011, Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. |J Agric Food Chem, 59, 12830-12835. 3.Jixia L, Zhu F, Lubet RA, De Luca A, 2013, Quercetin-3-methyl ether inhibits lapatinib-sensitive and -resistant breast cancer cell growth by inducing G2/M arrest and apoptosis. Mol Carcinogen, 52, 134-143. 4.Li SZ, Li K, ZhangJH, Dong Z, 2013, The Effect of Quercetin on Doxorubicin Cytotoxicity in Human Breast Cancer Cells. Med Chem, 13, 352-355. 5.NP Seeram, R Lee, HS Scheuller, D Heber. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectrometry. Food Chem 97, 1–11, 2006. 6. M Da Silva Pinto, JE De Carvalho, FM Lajolo, MI Genovese, K Shetty. Evaluation of antiproliferative, anti-type 2 diabetes, and antihypertension potentials of ellagitannins from strawberries (Fragaria6ananassa Duch.) using in vitro models. J Med Food 13, 1027–1035, 2010. 7. F Lopes-da-Silve, S de Pascual-Teresa, JC Rivas-Gonzalo, C Santos-Buelga. Identification of anthocyanin pigments in strawberry (cv. Camarosa) by LC using DAD and ESI-MS detection. Eur Food Res Technol 214, 248–253, 2002. 8. F Lopes da Silva, MT Escribano-Bailon, JJ Perez Alonso, J Rivas-Gonzalo, C Santos-Buelga. Anthocyanin pigments in strawberry. LWT-Food Scien Tech 40, 374–382, 2007. 9. MN Clifford. Anthocyanins: nature, occurrence and dietary burden. J Sci Food Agric 80, 1063–1072, 2000. 10. M Matsumoto, H Hara, H Chiji, K Kasai. Gastroprotective Effect of Red Pigments in Black Chokeberry Fruit (Aronia melanocarpa Elliot) on Acute Gastric Hemorrhagic Lesions in Rats. J Agric Food Chem 52, 2226–2229, 2004. 11. T Miyazawa, K Nakagawa. Structure-related emission spectrometric analysis of the chemiluminescence of catechins, flavins and anthocyanins. Biosci Biotechnol Biochem 62, 829–832, 1998. 12. G Cao, RM Russell, N Lischner, R Prior. Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128, 2383–2390, 1998. 13. PB Hwan, T Khanal, JM Choi, YC Chung, HG Jeong. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food Chem Toxicol 49, 93–99, 2011. 14. S Tulipani, S Romandini, F Busco, S Bompadre, B Mezzetti, et al. Ascorbate, not urate, modulates the plasma antioxidant capacity after strawberry intake. Food Chem 117, 181–188, 2009. 15. S Tulipani, JM Alvarez-Suarez, F Busco, S Bompadre, JL Quiles, et al. Strawberry consumption improves plasma antioxidant status and erythrocyte resistance to oxidative hemolysis in humans. Food Chem 128, 180–186, 2011. 16. M Battino, J Beekwilder, B Denoyes-Rothan, M Laimer, GJ McDougall, et al. Bioactive compounds in berries relevant to human health. Nutr Rev 67, 145–150, 2009. 17. S Tulipani, S Romandini, JM Alvarez-Suarez, F Capocasa, B Mezzetti, et al. Folate Content in Different Strawberry Genotypes and Folate Status in Healthy Subjects after Strawberry Consumption. Bio Factors 34, 47–55, 2008. 18. S Tulipani, G Marzban, A Herndl, M Laimer, B Mezzetti, et al. Influence of environmental and genetic factors on health-related compounds in strawberry. Food Chem 124, 906–913, 2011. 19.JM Alvarez-Suarez, D Dekanski, S Ristic´, NV Radonjic´, ND Petronijevic´, et al. 2011, Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase. PLoS ONE 6(10): e25878. doi: 10.1371/journal.pone.0025878,. 1.陳希煌(2015),農業政策評論(Agricultural Policy Review),1:1,1-7,臺灣農村經濟學會出版 2.余祁暐、魏於翔、楊舒涵(2016),國際智慧農業發展策略,智慧農業,NO.48 3.羅國偉(2015),溫室草苺栽培技術,桃園區農業專訊69期 4.陳新安,農業概論,勁園文化出版 5.陳駿季、楊智凱(2017),推動智慧農業-翻轉臺灣農業,國土及公共治理季刊,第五卷,第四期 6.余祁暐、周孟嫻 (2015),從國際生產力4.0案例前瞻未來農業,農業生技產業季刊,NO.44 7.陳明陽(2019),DIGITIMES智慧應用 8.陳駿季(2016),以智慧科技邁向效率安全與低風險的未來。PPT檔 9.陳駿季(2017),智慧農業是什麼?工業4.0又怎麼幫助臺灣農業?郭茵娜、黃麗秋採訪整理 10.楊智凱、施瑩艷、楊舒涵(2016),以智慧科技邁向臺灣農業4.0時代。農政與農情289:6-11 11.陳亦偉(2019),中央社全球中央雜誌 2019.6月號 12.劉宥杉(2017),「行政院農業委員會委辦計畫」智慧農業4.0計畫績效管理暨產業趨勢分析(106農科-18.2.3-科-a1) 13.蔡致榮(2014),未來可能的氣候智慧型溫室農耕技術,植物種苗生技2014 NO.37 14.王奕(2017),《農資與市場》傳媒,https://kknews.cc/agriculture/gqneo89.html 15.施昭彰,各國草莓產業發展概況與展望,PPT檔 16.農委會種苗改良繁殖場,2016台灣草莓概況,PPT檔 17.上下游編輯部,2019.04.09 草莓夢幻新品「戀香」誕生! 18.李彗禎(2014),探究無毒栽種草莓葉水萃物及其功能性成分抗乳癌功效及機轉之探討:在抗氧化、抗發炎、凋謝死亡、自噬死亡及有絲分裂崩解,中山醫學大學醫學系 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74494 | - |
dc.description.abstract | 現今農業面臨最大的挑戰在於極端氣候、農業人口老化與食品安全等問題,所以全球各國的農業紛紛應用資通訊技術(ICT)、物聯網(IoT)及大數據(Big Data)等智慧農業相關技術,其中透過感測器可以更即時、更準確地掌握關鍵數據,希望能更有效與更全面的增加糧食產能、維護食品安全及保持生態安全。
草莓為溫帶地區生產的重要小漿果類之一。由於台灣處於亞熱帶,氣候變化大,育苗期間,又適逢颱風季節,溫室育苗可減低颱風造成育苗損失的風險;而栽培期間多雨潮濕氣候,果實容易腐爛,且病蟲害傳播迅速,造成防治困難,進而影響草莓的品質及產量。 從本研究的研究對象所發展的草莓一條鏈模式來探討,台灣的產業趨勢如電子科技的代工、農業技術的研發等非常適合智慧農業的發展。因此若能以溫室及智慧農業系統栽培草莓,除了可保護作物外,也可提供遊客良好的觀光草莓園採果環境,改善露天栽培的草莓園在雨天時無法提供遊客採果及果實易受損失的缺點,更有希望生產夏季草莓,補足目前草莓產業所欠缺的一環,進而使草莓產業體系更完善,未來應有機會促成此一智慧溫室種草莓的模式整廠輸出至其他地區,創造更大的產值。 | zh_TW |
dc.description.abstract | In the face of extreme weather, aging agricultural manpower, food safety and other challenges, global agriculture has applied intelligent agricultural-related technologies such as ict, the Internet of Things (IoT) and big data (Big Data), and grasped more accurately key data through sensors. Those will make more effective and comprehensive maintenance of food security, food safety and ecological safety.
Strawberry is one of the important small berries produced in temperate regions. As Taiwan is located in the subtropical zone, climate change is great, and the seedling raising period coincides with typhoon season, greenhouse seedling raising can reduce the risk of seedling loss caused by typhoon, while the rainy and humid climate during the cultivation period makes the fruit rotten easily, and the spread of diseases and insect pests is rapid, which makes the control difficult, thus affecting the quality and yield of strawberries. From the strawberry chain model developed by the research object in this study, Taiwan's industrial trends such as electronic technology contract, agricultural technology research and development are very suitable for the development of smart agriculture. Therefore, if the cultivation of strawberries in greenhouses and smart agricultural systems, in addition to protecting crops, can also provide tourists with a good strawberry garden harvesting environment, improve the situation of open-air cultivation of strawberry garden that cannot provide tourists to pick fruits and the fruits are easily damaged in rainy days. It is more hopeful to produce summer strawberries to supplement the current strawberry industry, further so that the strawberry industry system is more perfect. In the future, there should be an opportunity for the whole factory to export strawberry planting model in this smart greenhouse to other areas and create greater output value. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:39:00Z (GMT). No. of bitstreams: 1 ntu-108-P06e43012-1.pdf: 5693551 bytes, checksum: e1b8352d8d31f310d9087d77dcc5d427 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 第一節. 研究背景與動機 1 第二節. 研究步驟與流程 5 第三節. 研究範圍 7 第四節. 論文架構 9 第二章 文獻探討 10 第一節. 農業的演進 10 第二節. 智慧農業的應用與發展 13 第三節. 台灣在智慧農業的發展 22 第四節. 世界主要國家的智慧農業 25 第三章 研究架構與方法 42 第一節. 研究架構 42 第二節. 研究方法 43 第四章 個案分析 45 第一節. 整體草莓產業之現況 45 第二節. 個案之草莓產業發展策略 67 第三節. 個案草莓產業發展策略之分析 79 第五章 結論與建議 95 第一節. 結論 95 第二節. 建議 96 參考文獻 99 | |
dc.language.iso | zh-TW | |
dc.title | 智慧農業的發展與應用:以草莓產業為例 | zh_TW |
dc.title | Development and Application of Smart Agriculture:
The Case of Strawberry Industry | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 施昭彰(Jou-Chang Shih) | |
dc.contributor.oralexamcommittee | 李心予(Hsin-Yu lee) | |
dc.subject.keyword | 農業,環境,氣候,智慧農業,草莓一條鏈模式, | zh_TW |
dc.subject.keyword | Agriculture,Environment,Climate,Smart Agriculture,Strawberry whole chain model, | en |
dc.relation.page | 102 | |
dc.identifier.doi | 10.6342/NTU201902857 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-08 | |
dc.contributor.author-college | 進修推廣學院 | zh_TW |
dc.contributor.author-dept | 生物科技管理碩士在職學位學程 | zh_TW |
顯示於系所單位: | 生物科技管理碩士在職學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。