請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74472完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李佳翰(Jia-Han Li) | |
| dc.contributor.author | Yu-Jui Wang | en |
| dc.contributor.author | 王于瑞 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:37:45Z | - |
| dc.date.available | 2024-08-16 | |
| dc.date.copyright | 2019-08-16 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-08 | |
| dc.identifier.citation | [1] B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, 'Refractive index less than two: photonic nanojets yesterday, today and tomorrow,' Optical Materials Express, vol. 7, no. 6, pp. 1820-1847, 2017.
[2] G. M. Das, A. B. Ringne, V. R. Dantham, R. K. Easwaran, and R. Laha, 'Numerical investigations on photonic nanojet mediated surface enhanced Raman scattering and fluorescence techniques,' Optics express, vol. 25, no. 17, pp. 19822-19831, 2017. [3] Y. Deng et al., 'Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin,' Advanced Materials, vol. 21, no. 13, pp. 1377-1382, 2009. [4] F. N, 'The effect of adenine and kinetin on growth and differentiation of Lupinas,' Physiologia Plantarum, vol. 13, pp. 468-81, 1960. [5] S. S and M. F, 'Protective Role of Exogenous kinetin against oxidative stress induced by salt stress in rice genotypes,' Formerly the Philippine Agriculturist, vol. 99, no. 3, pp. 229-237, 2016. [6] Y. Wei, D. Liu, Y. Zheng, C. Hao, H. Li, and W. Ouyang, 'Neuroprotective effects of kinetin against glutamate-induced oxidative cytotoxicity in HT22 cells: Involvement of Nrf2 and heme oxygenase-1,' Neurotoxicity research, vol. 33, no. 4, pp. 725-737, 2018. [7] Y. Deng, D. Qi, C. Deng, X. Zhang, and D. Zhao, 'Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins,' Journal of the American Chemical Society, vol. 130, no. 1, pp. 28-29, 2008. [8] M. Shao, F. Ning, J. Zhao, M. Wei, D. G. Evans, and X. Duan, 'Preparation of Fe3O4@ SiO2@ layered double hydroxide core–shell microspheres for magnetic separation of proteins,' Journal of the American chemical society, vol. 134, no. 2, pp. 1071-1077, 2012. [9] M. Shao et al., 'Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors,' Chemistry of Materials, vol. 24, no. 6, pp. 1192-1197, 2012. [10] N. Bontempi, I. Vassalini, and I. Alessandri, 'All‐dielectric core/shell resonators: From plasmon‐free SERS to multimodal analysis,' Journal of Raman Spectroscopy, 2018. [11] C.-Y. Liu, 'Superenhanced photonic nanojet by core-shell microcylinders,' Physics Letters A, vol. 376, no. 23, pp. 1856-1860, 2012. [12] G. Gu et al., 'Super-long photonic nanojet generated from liquid-filled hollow microcylinder,' Optics letters, vol. 40, no. 4, pp. 625-628, 2015. [13] Y. Liu et al., 'Characteristics of photonic nanojets from two-layer dielectric hemisphere,' Chinese Physics B, vol. 26, no. 11, p. 114201, 2017. [14] C.-Y. Liu, T.-P. Yen, O. V. Minin, and I. V. Minin, 'Engineering photonic nanojet by a graded-index micro-cuboid,' Physica E: Low-dimensional Systems and Nanostructures, vol. 98, pp. 105-110, 2018. [15] S.-C. Kong, A. Taflove, and V. Backman, 'Quasi one-dimensional light beam generated by a graded-index microsphere,' Optics Express, vol. 17, no. 5, pp. 3722-3731, 2009. [16] P. Wu, J. Li, K. Wei, and W. Yue, 'Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core–shell dielectric microsphere,' Applied Physics Express, vol. 8, no. 11, p. 112001, 2015. [17] J. H. Soh, M. Wu, G. Gu, L. Chen, and M. Hong, 'Temperature-controlled photonic nanojet via VO 2 coating,' Applied optics, vol. 55, no. 14, pp. 3751-3756, 2016. [18] Y.-J. Wang, C.-A. Dai, and J.-H. Li, 'Numerical Study of Tunable Photonic Nanojets Generated by Biocompatible Hydrogel Core-Shell Microspheres for Surface-Enhanced Raman Scattering Applications,' Polymers, vol. 11, no. 3, p. 431, 2019. [19] Z. Chen, A. Taflove, and V. Backman, 'Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,' Optics express, vol. 12, no. 7, pp. 1214-1220, 2004. [20] A. Darafsheh and D. Bollinger, 'Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders,' Optics Communications, vol. 402, pp. 270-275, 2017. [21] X. Li, Z. Chen, A. Taflove, and V. Backman, 'Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,' Optics express, vol. 13, no. 2, pp. 526-533, 2005. [22] B. Luk’Yanchuk, Z. Wang, W. Song, and M. Hong, 'Particle on surface: 3D-effects in dry laser cleaning,' Applied Physics A, vol. 79, no. 4-6, pp. 747-751, 2004. [23] C.-Y. Liu and L.-J. Chang, 'Photonic nanojet modulation by elliptical microcylinders,' Optik-International Journal for Light and Electron Optics, vol. 125, no. 15, pp. 4043-4046, 2014. [24] L. Han, Y. Han, G. Gouesbet, J. Wang, and G. Gréhan, 'Photonic jet generated by spheroidal particle with Gaussian-beam illumination,' JOSA B, vol. 31, no. 7, pp. 1476-1483, 2014. [25] V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, 'Terajets produced by dielectric cuboids,' Applied Physics Letters, vol. 105, no. 8, p. 084102, 2014. [26] Y. E. Geints, A. Zemlyanov, and E. Panina, 'Microaxicon-generated photonic nanojets,' JOSA B, vol. 32, no. 8, pp. 1570-1574, 2015. [27] I. V. Minin, O. V. Minin, and Y. E. Geints, 'Localized EM and photonic jets from non‐spherical and non‐symmetrical dielectric mesoscale objects: brief review,' Annalen der Physik, vol. 527, no. 7-8, pp. 491-497, 2015. [28] D. McCloskey, J. J. Wang, and J. Donegan, 'Low divergence photonic nanojets from Si 3 N 4 microdisks,' Optics Express, vol. 20, no. 1, pp. 128-140, 2012. [29] I. Mahariq, I. H. Giden, H. Kurt, O. V. Minin, and I. V. Minin, 'Strong electromagnetic field localization near the surface of hemicylindrical particles,' Optical and Quantum Electronics, vol. 49, no. 12, p. 423, 2017. [30] B. Zhang et al., 'Ultralong photonic nanojet formed by dielectric microtoroid structure,' Applied optics, vol. 57, no. 28, pp. 8331-8337, 2018. [31] D. Grojo et al., 'Bessel-like photonic nanojets from core-shell sub-wavelength spheres,' Optics letters, vol. 39, no. 13, pp. 3989-3992, 2014. [32] Z. Wang et al., 'Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,' Nature communications, vol. 2, p. 218, 2011. [33] Z. Chen, A. Taflove, and V. Backman, 'Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,' Optics Letters, vol. 31, no. 3, pp. 389-391, 2006. [34] K. Yi, H. Wang, Y. Lu, and Z. Yang, 'Enhanced Raman scattering by self-assembled silica spherical microparticles,' Journal of Applied Physics, vol. 101, no. 6, p. 063528, 2007. [35] Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, 'Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,' Optics express, vol. 23, no. 20, pp. 25854-25865, 2015. [36] A. Arya, R. Laha, G. M. Das, and V. R. Dantham, 'Enhancement of R aman scattering signal using photonic nanojet of portable and reusable single microstructures,' Journal of Raman Spectroscopy, vol. 49, no. 5, pp. 897-902, 2018. [37] S. H. Huang et al., 'Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,' Photonics Research, vol. 6, no. 5, pp. 346-356, 2018. [38] G. M. Das and V. R. Dantham, 'Enhancement of SERS signal of single/few molecules using photonic nanojet of a dielectric microsphere,' in AIP Conference Proceedings, 2018, vol. 1953, no. 1, p. 060019: AIP Publishing. [39] E. Mcleod and C. B. Arnold, 'Subwavelength direct-write nanopatterning using optically trapped microspheres,' Nature nanotechnology, vol. 3, no. 7, p. 413, 2008. [40] Y.-C. Li et al., 'Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,' Light: Science & Applications, vol. 5, no. 12, p. e16176, 2016. [41] Z. Chen, A. Taflove, X. Li, and V. Backman, 'Superenhanced backscattering of light by nanoparticles,' Optics letters, vol. 31, no. 2, pp. 196-198, 2006. [42] S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, 'Photonic nanojet-enabled optical data storage,' Optics express, vol. 16, no. 18, pp. 13713-13719, 2008. [43] X. Cui, D. Erni, and C. Hafner, 'Optical forces on metallic nanoparticles induced by a photonic nanojet,' Optics express, vol. 16, no. 18, pp. 13560-13568, 2008. [44] P. K. Upputuri, Z.-B. Wen, Z. Wu, and M. Pramanik, 'Super-resolution photoacoustic microscopy using photonic nanojets: a simulation study,' Journal of Biomedical Optics, vol. 19, no. 11, p. 116003, 2014. [45] V. N. Astratov et al., 'Photonic nanojets for laser surgery,' SPIE Newsroom, vol. 12, pp. 32-34, 2010. [46] D. Gérard et al., 'Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,' Optics express, vol. 16, no. 19, pp. 15297-15303, 2008. [47] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. John Wiley & Sons, 2008. [48] M. fleischmann, P. J. Hendra, and A. J. Mcquillan, 'Raman spectra of pyridine absorbed at a silver electrode,' Chemical physics letters, vol. 26, no. 2, pp. 163-166, 1974. [49] E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, 'Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules,' Journal of the American Chemical Society, vol. 131, no. 40, pp. 14466-14472, 2009. [50] E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, 'Surface enhanced Raman scattering enhancement factors: a comprehensive study,' The Journal of Physical Chemistry C, vol. 111, no. 37, pp. 13794-13803, 2007. [51] J. P. Camden et al., 'Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,' Journal of the American Chemical Society, vol. 130, no. 38, pp. 12616-12617, 2008. [52] K. Chen, M. Leona, K. C. Vo‐Dinh, F. Yan, M. B. Wabuyele, and T. Vo‐Dinh, 'Application of surface‐enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art,' Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, vol. 37, no. 4, pp. 520-527, 2006. [53] Y.-j. Ai et al., 'Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS),' Food chemistry, vol. 241, pp. 427-433, 2018. [54] R. A. Halvorson and P. J. Vikesland, 'Surface-enhanced Raman spectroscopy (SERS) for environmental analyses,' ed: ACS Publications, 2010. [55] W. Smith, 'Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis,' Chemical Society Reviews, vol. 37, no. 5, pp. 955-964, 2008. [56] M. G. Albrecht and J. A. Creighton, 'Anomalously intense Raman spectra of pyridine at a silver electrode,' Journal of the american chemical society, vol. 99, no. 15, pp. 5215-5217, 1977. [57] N. Guillot and M. L. de la Chapelle, 'The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures,' Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 113, no. 18, pp. 2321-2333, 2012. [58] X. Zhao, Q. Zhang, D. Chen, and P. Lu, 'Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites,' Macromolecules, vol. 43, no. 5, pp. 2357-2363, 2010. [59] H. Jung et al., 'Novel macromonomer as a reactive stabilizer in the dispersion polymerization of methylmethacrylate,' Macromolecular research, vol. 12, no. 5, pp. 512-518, 2004. [60] M. Galia, F. Svec, and J. M. Frechet, 'Monodisperse polymer beads as packing material for high‐performance liquid chromotography: Effect of divinylbenzene content on the porous and chromatographic properties of poly (styrene‐co‐divinylbenzene) beads prepared in presence of linear polystyrene as a porogen,' Journal of Polymer Science Part A: Polymer Chemistry, vol. 32, no. 11, pp. 2169-2175, 1994. [61] A. I. Abdelrahman et al., 'Metal-containing polystyrene beads as standards for mass cytometry,' Journal of analytical atomic spectrometry, vol. 25, no. 3, pp. 260-268, 2010. [62] C. K. Ober and K. P. Lok, 'Dispersion polymerization process for toner compositions,' ed: Google Patents, 1986. [63] S.-H. Huang and R.-S. Juang, 'Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review,' Journal of Nanoparticle Research, vol. 13, no. 10, p. 4411, 2011. [64] N. B. Viswanathan, P. Thomas, J. Pandit, M. Kulkarni, and R. Mashelkar, 'Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique,' Journal of controlled release, vol. 58, no. 1, pp. 9-20, 1999. [65] A. J. Paine, W. Luymes, and J. McNulty, 'Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly (N-vinylpyrrolidone)-stabilized reactions,' Macromolecules, vol. 23, no. 12, pp. 3104-3109, 1990. [66] R. Arshady, 'Suspension, emulsion, and dispersion polymerization: A methodological survey,' Colloid and polymer science, vol. 270, no. 8, pp. 717-732, 1992. [67] J. Ugelstad, P. Mork, K. H. Kaggerud, T. Ellingsen, and A. Berge, 'Swelling of oligomer-polymer particles. New methods of preparation,' Advances in colloid and interface science, vol. 13, no. 1-2, pp. 101-140, 1980. [68] V. S̆migol, F. e. S̆vec, K. Hosoya, Q. Wang, and J. M. Fréchet, 'Monodisperse polymer beads as packing material for high‐performance liquid chromatography. Synthesis and properties of monidisperse polystyrene and poly (methacrylate) latex seeds,' Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, vol. 195, no. 1, pp. 151-164, 1992. [69] C. Zhang, S. Cvetanovic, and J. M. Pearce, 'Fabricating ordered 2-D nano-structured arrays using nanosphere lithography,' MethodsX, vol. 4, pp. 229-242, 2017. [70] 'Lumerical FDTD Solutions, Available online: http://www.lumerical.com (accessed on 14 February 2019).' [71] V. F. Sechriest et al., 'GAG‐augmented polysaccharide hydrogel: A novel biocompatible and biodegradable material to support chondrogenesis,' Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, vol. 49, no. 4, pp. 534-541, 2000. [72] K. T. Nguyen and J. L. West, 'Photopolymerizable hydrogels for tissue engineering applications,' Biomaterials, vol. 23, no. 22, pp. 4307-4314, 2002. [73] Y.-P. Lee et al., 'Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery,' Colloids and Surfaces B: Biointerfaces, vol. 175, pp. 26-35, 2019. [74] H.-P. Shen and W.-Y. Chiu, 'Monodisperse Core-shell Type Polystyrene/Silver Particles via Dispersion Polymerization and Modified Electroless Plating: Synthesis and Characterization,' 國立臺灣大學高分子科學與工程學研究所碩士論文, no. https://hdl.handle.net/11296/h97eg5, 2014. [75] X. Zhang, N. C. Shah, and R. P. Van Duyne, 'Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),' Vibrational Spectroscopy, vol. 42, no. 1, pp. 2-8, 2006. [76] S.-C. Luo, K. Sivashanmugan, J.-D. Liao, C.-K. Yao, and H.-C. Peng, 'Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,' Biosensors and Bioelectronics, vol. 61, pp. 232-240, 2014. [77] C.-M. Tsen et al., 'A simple approach for the ultrasensitive detection of paraquat residue in adzuki beans by surface-enhanced Raman scattering,' Analyst, vol. 144, no. 2, pp. 426-438, 2019. [78] E. D. Palik, Handbook of optical constants of solids. Academic press, 1998. [79] P. B. Johnson and R.-W. Christy, 'Optical constants of the noble metals,' Physical review B, vol. 6, no. 12, p. 4370, 1972. [80] A. T. N. Lam, E.-O. Ganbold, K.-H. Cho, D. Kang, and S.-W. Joo, 'Raman spectroscopy of gold nanoparticle conjugates of cosmetic ingredient kinetin,' Vibrational Spectroscopy, vol. 73, pp. 15-18, 2014. [81] G. M. Das, R. Laha, and V. R. Dantham, 'Photonic nanojet‐mediated SERS technique for enhancing the Raman scattering of a few molecules,' Journal of Raman Spectroscopy, vol. 47, no. 8, pp. 895-900, 2016. [82] H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, 'Local field enhancement effects for nanostructuring of surfaces,' Journal of microscopy, vol. 202, no. 1, pp. 129-135, 2001. [83] H.-H. Cheng et al., 'Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering,' Optics Express, vol. 19, no. 22, pp. 22125-22141, 2011. [84] C. Skehan, B. Ai, S. R. Larson, K. M. Stone, W. M. Dennis, and Y. Zhao, 'Plasmonic and SERS performances of compound nanohole arrays fabricated by shadow sphere lithography,' Nanotechnology, vol. 29, no. 9, p. 095301, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74472 | - |
| dc.description.abstract | 我們研究了由聚合物微球產生的光子奈米噴流應用於表面增強拉曼散射方法,並進一步提高細胞裂殖素(一種植物生長調節劑)的檢測靈敏度。採用分散聚合法製備單分散聚苯乙烯微球,並用氣水界面漂浮法將微球在表面增強拉曼散射基底上塗覆。該組合結構使得能夠產生與電漿共振耦合的光子奈米噴流,從而增強拉曼散射信號,該提出結構的進一步研究可用於光學傳感應用。
我們研究了具有與微球結構不同光學性質的生物相容性水凝膠核殼微球帶來的光子奈米噴流。發現殼層的存在可以顯著影響光子奈米噴流的特性,例如焦距,強度,有效長度和焦點尺寸。Klarite基底上的生物相容性核殼微球的光子奈米噴流的數值模擬,其是經典的表面增強拉曼散射基底,顯示在檢測系統中添加核殼微球的情況下,拉曼信號可以是與不存在核殼微球的情況相比,在水中增強23倍,在空氣中增強108倍。我們對使用由生物相容性水凝膠核殼微球產生的可調諧光子奈米噴流的研究顯示了未來生物傳感應用的潛力。 | zh_TW |
| dc.description.abstract | The photonic nanojets generated by polymeric microspheres are studied and used for further improving the detection sensitivity of kinetin, a kind of plant growth regulators, via the surface-enhanced Raman scattering method. Monodisperse polystyrene microspheres were prepared by using dispersion polymerization method and coated on the surface-enhanced Raman scattering substrate by air-water interfacial floating method. This combined structure enables the generation of photonic nanojets coupled with the plasmonic resonances so that the Raman signals can be enhanced. Further study of this proposed structure could be useful for optical sensing applications.
We numerically studied the photonic nanojets brought about from biocompatible hydrogel core-shell microspheres with different optical properties. It was found that the presence of the shell layer can significantly affect the characteristics of the photonic nanojets, such as the focal distance, intensity, effective length, and focal size. The numerical simulations of the photonic nanojets from the biocompatible core-shell microspheres on a Klarite substrate, which is a classical surface-enhancing Raman scattering substrate, showed that the Raman signals in the case of adding the core-shell microspheres in the system can be further enhanced 23 times in water and 108 times in air as compared in the case in which no core-shell microspheres are present. Our study of using tunable photonic nanojets produced from the biocompatible hydrogel core-shell microspheres shows potential in future biosensing applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:37:45Z (GMT). No. of bitstreams: 1 ntu-108-R06525100-1.pdf: 35110590 bytes, checksum: df55a2d9b7e5c6bb4097e9fc9b7fef7d (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | STATEMENT OF CONTRIBUTION I
中文摘要 II ABSTRACT III LIST OF TABLE VII LIST OF DIAGRAM VIII CHAPTER 1 INTRODUCTION AND MOTIVATION 1 CHAPTER 2 THEORY 5 2.1 PHOTONIC NANOJETS GENERATED BY MICROSPHERES FOR SURFACE-ENHANCED RAMAN SCATTERING APPLICATIONS 5 2.1.1 Photonic Nanojets 5 2.1.2 Surface-Enhanced Raman Scattering 8 2.2 SIMULATION 11 2.2.1 Finite-Difference Time-Domain Method 11 2.3 EXPERIMENT 16 2.3.1 Dispersion Polymerization method 16 2.3.2 Air-Water Interfacial Floating Method 22 CHAPTER 3 METHODOLOGY 24 3.1 SIMULATION 24 3.1.1 Effects of the Refractive Index of Microspheres on Photonic Nanojets 24 3.1.2 Effects of the Size of Monodisperse Polystyrene Microspheres on Photonic Nanojets 25 3.1.3 Effects of the Surrounding Medium on Photonic Nanojets 25 3.1.4 Enhancements of SERS Signals by Polystyrene Microspheres 26 3.1.5 Effects of Various of Parameters of the Shell of Core-shell Microspheres on Photonic Nanojets 27 3.1.6 Enhancements of SERS Signals by Core-Shell Microspheres 29 3.2 EXPERIMENT 30 3.2.1 Experimental Materials 30 3.2.2 Experimental Apparatus 31 3.2.3 Experimental Procedure 33 3.2.4 Synthesized Polymeric Emulsion Particles 34 3.2.4.1 Polymerization Method 34 3.2.4.2 Size of Synthesized Polystyrene Microspheres Observed by Scanning Electron Microscope 36 3.2.5 Synthesized Polystyrene Microspheres Coated on a SERS Substrate 37 3.2.5.1 Coating Method 37 3.2.5.2 Synthesized Polystyrene Microspheres with Commercial SERS Substrate Observed by Optical Microscopy 38 3.2.5.3 Synthesized Polystyrene Microspheres with Commercial SERS Substrate Observed by Scanning Electron Microscope 39 3.2.6 Raman Detection 39 CHAPTER 4 RESULTS AND DISCUSSION 41 4.1 USING THE PHOTONIC NANOJETS GENERATED BY MICROSPHERES FOR IMPROVING SURFACE-ENHANCED RAMAN SCATTERING DETECTION 41 4.1.1 Effects of the Refractive Index of Microspheres on Photonic Nanojets 41 4.1.2 Effects of the Size of Monodisperse Polystyrene Microspheres on Photonic Nanojets 44 4.1.3 Effects of the Surrounding Medium on Photonic Nanojets 48 4.1.4 Enhancements of SERS Signals by Polystyrene Microspheres 49 4.1.5 Measurements of Conversion Rate of Synthesized Polystyrene Microspheres 54 4.1.6 Observation of Particulate Size of Synthesized Polystyrene Microspheres 55 4.1.7 Observation of SERS Substrate with or without Synthesized Polystyrene Microspheres 58 4.1.8 Raman Spectra of Plant Growth Regulators on SERS Substrates with and without the Synthesized Polystyrene Microspheres 63 4.2 NUMERICAL STUDY OF TUNABLE PHOTONIC NANOJETS GENERATED BY BIOCOMPATIBLE HYDROGEL CORE-SHELL MICROSPHERES FOR SURFACE-ENHANCED RAMAN SCATTERING APPLICATIONS 68 4.2.1 Effects of the Thickness of the Shell of Core-Shell Microspheres on Photonic Nanojets 69 4.2.2 Effects of Size of Core-Shell Microspheres on Photonic Nanojets 77 4.2.3 Effects of Surrounding Medium on Photonic Nanojets 82 4.2.4 Enhancements of SERS Signals by Core-Shell Microspheres 84 CHAPTER 5 CONCLUSIONS 90 CHAPTER 6 REFERENCES 93 | |
| dc.language.iso | en | |
| dc.subject | 電漿共振 | zh_TW |
| dc.subject | 分散聚合法 | zh_TW |
| dc.subject | 氣水介面漂浮法 | zh_TW |
| dc.subject | 微球結構 | zh_TW |
| dc.subject | 激動素 | zh_TW |
| dc.subject | 植物生長調節劑檢測 | zh_TW |
| dc.subject | 表面增強拉曼散射 | zh_TW |
| dc.subject | 光學檢測 | zh_TW |
| dc.subject | 核殼狀微球結構 | zh_TW |
| dc.subject | 高分子 | zh_TW |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | 生醫檢測 | zh_TW |
| dc.subject | 光子奈米噴流 | zh_TW |
| dc.subject | 農業應用 | zh_TW |
| dc.subject | Agricultural application | en |
| dc.subject | Surface-enhanced Raman scattering | en |
| dc.subject | Plasmonic resonance | en |
| dc.subject | Dispersion polymerization method | en |
| dc.subject | Air-water interfacial floating method | en |
| dc.subject | Microsphere | en |
| dc.subject | Kinetin | en |
| dc.subject | Plant growth regulators sensing | en |
| dc.subject | Photonic nanojet | en |
| dc.subject | Optical sensing | en |
| dc.subject | Core-shell microsphere | en |
| dc.subject | Polymer | en |
| dc.subject | Biocompatible | en |
| dc.subject | Biosensing | en |
| dc.title | 利用一層聚苯乙烯微球與具有生物相容性水凝膠核殼微球產生之光子奈米噴流於增進表面增強拉曼散射應用 | zh_TW |
| dc.title | Using Photonic Nanojets Generated by a Layer of Polystyrene Microspheres and Biocompatible Hydrogel Core-Shell Microspheres for Improving Surface-Enhanced Raman Scattering Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 薛承輝(Chun-Hway Hsueh),許文翰(Wen-Hann Sheu),戴子安(Chi-An Dai),王淑珍(Shu-Jen Wang) | |
| dc.subject.keyword | 光子奈米噴流,表面增強拉曼散射,電漿共振,分散聚合法,氣水介面漂浮法,微球結構,激動素,植物生長調節劑檢測,農業應用,光學檢測,核殼狀微球結構,高分子,生物相容性,生醫檢測, | zh_TW |
| dc.subject.keyword | Photonic nanojet,Surface-enhanced Raman scattering,Plasmonic resonance,Dispersion polymerization method,Air-water interfacial floating method,Microsphere,Kinetin,Plant growth regulators sensing,Agricultural application,Optical sensing,Core-shell microsphere,Polymer,Biocompatible,Biosensing, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU201902638 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 34.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
