Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃斯衍(Ssu-Yen Huang)
dc.contributor.authorTing-Wei Wengen
dc.contributor.author翁廷瑋zh_TW
dc.date.accessioned2021-06-17T08:37:05Z-
dc.date.available2019-08-13
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-08
dc.identifier.citation[1] H. J. Goldsmid, The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride. Proceedings of the Physical Society 71, 633 (1958).
[2] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).
[3] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).
[4] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, 3rd, and J. R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).
[5] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Quantum Dot Superlattice Thermoelectric Materials and Devices. Science 297, 2229 (2002).
[6] K.-i. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, and E. Saitoh, Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, (2010).
[7] K.-i. Uchida, T. Nonaka, T. Yoshino, T. Kikkawa, D. Kikuchi, and E. Saitoh, Enhancement of Spin-Seebeck Voltage by Spin-Hall Thermopile. Applied Physics Express 5, 093001 (2012).
[8] A. Kirihara, M. Ishida, K. i. Uchida, H. Someya, Y. Iwasaki, K. Ihara, S. Kohmoto, E. Saitoh, and T. Murakami, in 2014 IEEE International Nanoelectronics Conference (INEC)2014), pp. 1.
[9] B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, Inverse spin Hall effect in a ferromagnetic metal. Phys. Rev. Lett. 111, 066602 (2013).
[10] T. C. Chuang, P. L. Su, P. H. Wu, and S. Y. Huang, Enhancement of the anomalous Nernst effect in ferromagnetic thin films. Physical Review B 96, (2017).
[11] Y. Sakuraba, K. Hasegawa, M. Mizuguchi, T. Kubota, S. Mizukami, T. Miyazaki, and K. Takanashi, Anomalous Nernst Effect in L10-FePt/MnGa Thermopiles for New Thermoelectric Applications. Applied Physics Express 6, 033003 (2013).
[12] D.-J. Kim, K.-D. Lee, S. Surabhi, S.-G. Yoon, J.-R. Jeong, and B.-G. Park, Utilization of the Antiferromagnetic IrMn Electrode in Spin Thermoelectric Devices and Their Beneficial Hybrid for Thermopiles. Advanced Functional Materials 26, 5507 (2016).
[13] R. Ramos, A. Anadón, I. Lucas, K. Uchida, P. A. Algarabel, L. Morellón, M. H. Aguirre, E. Saitoh, and M. R. Ibarra, Thermoelectric performance of spin Seebeck effect in Fe3O4/Pt-based thin film heterostructures. APL Materials 4, 104802 (2016).
[14] F. P. V. e. E.I. Kondorskii, Degree of Localization of Magnetic Electrons and the Nernst-Ettingshausen Effect in Ferromagnetic Metals. Journal of Experimental and Theoretical Physics 18, 277 (1964).
[15] C. T. C., S. P. L., W. P. H., and H. S. Y., Enhancement of the anomalous Nernst effect in ferromagnetic thin films.
[16] A. Sola, P. Bougiatioti, M. Kuepferling, D. Meier, G. Reiss, M. Pasquale, T. Kuschel, and V. Basso, Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method. Sci Rep 7, 46752 (2017).
[17] C. W. Barton, T. A. Ostler, D. Huskisson, C. J. Kinane, S. J. Haigh, G. Hrkac, and T. Thomson, Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates. Sci Rep 7, 44397 (2017).
[18] L. M. Sandratskii and P. Mavropoulos, Magnetic excitations and femtomagnetism of FeRh: A first-principles study. Physical Review B 83, (2011).
[19] S. Maat, J. U. Thiele, and E. E. Fullerton, Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Physical Review B 72, (2005).
[20] V. L. Moruzzi and P. M. Marcus, Antiferromagnetic-ferromagnetic transition in FeRh. Physical Review B 46, 2864 (1992).
[21] M. Sharma, H. M. Aarbogh, J. U. Thiele, S. Maat, E. E. Fullerton, and C. Leighton, Magnetotransport properties of epitaxial MgO(001)/FeRh films across the antiferromagnet to ferromagnet transition. J. Appl. Phys. 109, 083913 (2011).
[22] P. A. Algarabel, M. R. Ibarra, C. Marquina, A. del Moral, J. Galibert, M. Iqbal, and S. Askenazy, Giant room‐temperature magnetoresistance in the FeRh alloy. Appl. Phys. Lett. 66, 3061 (1995).
[23] S. Yuasa, M. Nývlt, T. Katayama, and Y. Suzuki, Exchange coupling of NiFe/FeRh–Ir thin films. J. Appl. Phys. 83, 6813 (1998).
[24] I. Suzuki, T. Naito, M. Itoh, T. Sato, and T. Taniyama, Clear correspondence between magnetoresistance and magnetization of epitaxially grown ordered FeRh thin films. J. Appl. Phys. 109, 07C717 (2011).
[25] Z. Qiu, D. Hou, J. Barker, K. Yamamoto, O. Gomonay, and E. Saitoh, Spin colossal magnetoresistance in an antiferromagnetic insulator. Nat Mater 17, 577 (2018).
[26] P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, Electrical switching of an antiferromagnet. Science (2016).
[27] T. Moriyama, K. Oda, T. Ohkochi, M. Kimata, and T. Ono, Spin torque control of antiferromagnetic moments in NiO. Sci Rep 8, 14167 (2018).
[28] X. Z. Chen, R. Zarzuela, J. Zhang, C. Song, X. F. Zhou, G. Y. Shi, F. Li, H. A. Zhou, W. J. Jiang, F. Pan, and Y. Tserkovnyak, Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators. Phys. Rev. Lett. 120, (2018).
[29] X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J. H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Room-temperature antiferromagnetic memory resistor. Nat Mater 13, 367 (2014).
[30] A. Marshall, Magnetism and Magnetic Materials. Solid State Chemistry Lecture #23
[31] O. Gomonay, Berry-phase effects and electronic dynamics in a noncollinear antiferromagnetic texture. Physical Review B 91, (2015).
[32] Tem5psu, File:Magnetic hysteresis.png. Wikimedia Commons
[33] J. S. Kouvel, Unusual Nature of the Abrupt Magnetic Transition in FeRh and Its Pseudobinary Variants. J. Appl. Phys. 37, 1257 (1966).
[34] D. W. Cooke, F. Hellman, C. Baldasseroni, C. Bordel, S. Moyerman, and E. E. Fullerton, Thermodynamic measurements of Fe-Rh alloys. Phys. Rev. Lett. 109, 255901 (2012).
[35] I. Terasaki, in Comprehensive Semiconductor Science and Technology, edited by P. Bhattacharya, R. Fornari, and H. Kamimura (Elsevier, Amsterdam, 2011), pp. 326.
[36] K. Hasegawa, M. Mizuguchi, Y. Sakuraba, T. Kamada, T. Kojima, T. Kubota, S. Mizukami, T. Miyazaki, and K. Takanashi, Material dependence of anomalous Nernst effect in perpendicularly magnetized ordered-alloy thin films. Appl. Phys. Lett. 106, (2015).
[37] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).
[38] H. Yamada and S. Takada, Magnetoresistance of Antiferromagnetic Metals Due to s-d Interaction. J. Phys. Soc. Jpn. 34, 51 (1973).
[39] E. De Ranieri, A. W. Rushforth, K. Výborný, U. Rana, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, A. C. Irvine, J. Wunderlich, and T. Jungwirth, Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As. New Journal of Physics 10, (2008).
[40] P.-H. Wu and S.-Y. Huang, Noncollinear magnetization between surface and bulk ${mathrm{Y}}_{3}mathrm{F}{mathrm{e}}_{5}{mathrm{O}}_{12}$. Physical Review B 94, 024405 (2016).
[41] R. H. M., Low Temperature Solid State Physics. (1963).
[42] A. Hamzic and I. A. Campbell, The magnetoresistance of PdFe alloys. Journal of Physics F: Metal Physics 8, L33 (1978).
[43] A. Hamzic, S. Senoussi, I. A. Campbell, and A. Gert, The magnetoresistance of Pd-based dilute ferromagnetic alloys. Journal of Physics F: Metal Physics 8, 1947 (1978).
[44] visual-science, Magnetron sputtering technology.
[45] R0oland, Detection setup in a Vibrating Sample Magnetometer (VSM). Wikipedia
[46] Q. Design, PPMS MultiVu Application User’s Manual. PPMS MultiVu Application User’s Manual
[47] S. Daimon, R. Iguchi, T. Hioki, E. Saitoh, and K. I. Uchida, Thermal imaging of spin Peltier effect. Nat Commun 7, 13754 (2016).
[48] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003).
[49] A. D. Avery, S. J. Mason, D. Bassett, D. Wesenberg, and B. L. Zink, Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law. Physical Review B 92, (2015).
[50] X. Batlle and A. ı. Labarta, Finite-size effects in fine particles: magnetic and transport properties. Journal of Physics D: Applied Physics (2002).
[51] H. Wu, L. Huang, C. Fang, B. S. Yang, C. H. Wan, G. Q. Yu, J. F. Feng, H. X. Wei, and X. F. Han, Magnon Valve Effect between Two Magnetic Insulators. Phys. Rev. Lett. 120, 097205 (2018).
[52] T. A. Ostler, C. Barton, T. Thomson, and G. Hrkac, Modeling the thickness dependence of the magnetic phase transition temperature in thin FeRh films. Physical Review B 95, (2017).
[53] H. Kumar, D. R. Cornejo, S. L. Morelhao, S. Kycia, I. M. Montellano, N. R. Álvarez, G. Alejandro, and A. Butera, Strain effects on the magnetic order of epitaxial FeRh thin films. J. Appl. Phys. 124, (2018).
[54] J. M. Lommel, Magnetic and Electrical Properties of FeRh Thin Films. J. Appl. Phys. 37, 1483 (1966).
[55] M. A. de Vries, M. Loving, A. P. Mihai, L. H. Lewis, D. Heiman, and C. H. Marrows, Hall-effect characterization of the metamagnetic transition in FeRh. New Journal of Physics 15, 013008 (2013).
[56] Y. Kobayashi, K. Muta, and K. Asai, The Hall effect and thermoelectric power correlated with the giant magnetoresistance in modified FeRh compounds. Journal of Physics: Condensed Matter 13, 3335 (2001).
[57] P. M. Levy, S. Zhang, and A. Fert, Electrical conductivity of magnetic multilayered structures. Phys. Rev. Lett. 65, 1643 (1990).
[58] G. C. Han, J. J. Qiu, Q. J. Yap, P. Luo, D. E. Laughlin, J. G. Zhu, T. Kanbe, and T. Shige, Magnetic stability of ultrathin FeRh films. J. Appl. Phys. 113, (2013).
[59] C. Baldasseroni, C. Bordel, A. X. Gray, A. M. Kaiser, F. Kronast, J. Herrero-Albillos, C. M. Schneider, C. S. Fadley, and F. Hellman, Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 100, (2012).
[60] A. Ceballos, Z. Chen, O. Schneider, C. Bordel, L.-W. Wang, and F. Hellman, Effect of strain and thickness on the transition temperature of epitaxial FeRh thin-films. Appl. Phys. Lett. 111, (2017).
[61] X. Marti, I. Fina, and T. Jungwirth, Prospect for Antiferromagnetic Spintronics. IEEE Trans. Magn. 51, 1 (2015).
[62] Y. Ohtani and I. Hatakeyama, Features of broad magnetic transition in FeRh thin film. Journal of Magnetism and Magnetic Materials 131, 339 (1994).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74461-
dc.description.abstract現今被發想出的自旋電子元件(spintronic devices)大多與極化自旋流
(spin-polarized current)的傳輸效應相關,其中,極化自旋流的控制、操縱,與偵測,在新興的自旋電子學(spintronics)領域扮演了重要角色。近期,異常能斯特效應(anomalous Nernst effect)被發現能夠被用來利用微小的熱源來穩定的激發極化自旋流,因而相關的研究受到很大的重視。接下來,我們將展示分別利用鐵磁熱電堆(thermopile)與鐵銠(FeRh)合金實現的異常能斯特閥(valve)。在這份研究當中,我們首先展示了基於鐵磁材料的熱電堆,其橫向連結的結構不僅能夠增益其熱電電壓,也能將本身變為一個具有四種組態的異常能斯特閥。
首先,藉由鐵的異常能斯特效應訊號與鎳鐵相反的行為,這兩種材料可以被串聯為熱電堆。更重要的是,因為鐵的異常能斯特電壓在其厚度變薄時會變號並且劇烈增大,因而使用不同厚度的單一材料鐵,熱電堆的電壓可以更進一步地被提升。我們引入了一個熱電效率表示法並與其他文獻比較,結果顯示我們的元件具有極高的效率值。並且,熱電堆內不同磁化組態產生的異常能斯特效應電壓可以被輕易地分辨出來,亦即實現了一個具有多組態的異常能斯特閥。
其 二 , 我 們 展 示 了 , 具 有 一 階 (first-order) 反 鐵 磁 鐵 磁 相 轉 (phase transition)特性的單晶鐵銠合金,可以成為一個能夠以磁場控制其熱自旋電流無與有的異常能斯特閥。另外,因為發生於室溫附近的鐵銠反鐵磁鐵磁相轉機制的存在,尼爾向量(Néel vector)可以藉由場冷卻(field cooling)的過程來穩定控制。有趣的是,我們發現不同的尼爾向量對應的磁阻(magnetoresistance),其相對差異在低溫時會變號且在量值上劇烈增加。我們也觀察到了巨磁阻(giant magnetoresistance)般的效應存在於單晶與多晶的鐵銠當中。
承上述,我們利用了兩種不同的系統,分別演示了鐵磁與反鐵磁系統中極化自旋流的操縱,對於低功耗非揮發性(non-volatile)自旋電子元件的發展十分重要。
zh_TW
dc.description.abstractMost of the proposed spintronic devices involve spin-polarized transport. The control, manipulation, and detection of spin polarization play a central role in the emerging field of spintronics. Recently, it has been shown that the anomalous Nernst effect (ANE) can be readily used to excite spin-polarized current by only a small amount of thermal energy even without charge current. Related effects and phenomena has attracted a great deal of attention. Here, we demonstrate anomalous Nernst valve realized in the ferromagnetic thermopile and FeRh alloy.
We first show that ferromagnetic-materials-based thermopile device, whose laterally connected structure can not only enhance its own thermoelectric signal but also turn itself into a four-state anomalous Nernst valve. By utilizing the opposite sign of the ANE voltage between iron (Fe) in thicker films and permalloy (Py), a thermopile made of the two materials connected electrically in series is realized. More importantly, the voltage of the ferromagnetic thermopile can be significantly increased even if only one material Fe is used, since the ANE voltage of Fe can be reversed and dramatically increased by decreasing thickness. The relatively high thermoelectric efficiency is introduced and obtained from our device. Furthermore, the ANE voltage in thermopile resulting from different magnetization configurations between two ferromagnetic stripes can be clearly distinguished, that is, an anomalous Nernst valve with multiple states is demonstrated.
Second, we demonstrate that, endowed by the first-order antiferromagnetic-ferromagnetic (AFM-FM) phase transition nature, epitaxial growth FeRh can be an anomalous Nernst valve with its thermally excited spin current controllable between zero and one by external magnetic field. Besides, because of the existence of AFM-FM phase transition in FeRh near room temperature, the direction of the Néel vector can be readily manipulated via a moderate field at room temperature during cooling process. Interestingly, the relative difference of magnetoresistance for the resultant Néel vector with different orientations can be significantly enhanced at low temperature with reversed sign. We even observe giant-magnetoresistance-like spin-dependent transport behavior in both epitaxial and polycrystalline FeRh.
Our results introduce using two different approaches to manipulate spin polarized current in FM and AFM systems that are important for low power non-volatile spintronic devices.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:37:05Z (GMT). No. of bitstreams: 1
ntu-108-R05245007-1.pdf: 3511784 bytes, checksum: 969b04359dcd5278534048a17211e66e (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsAcknowledgement I
摘要 II
Abstract IV
Contents VI
Table of Figures VIII
1 Introduction 1
1.1 Anomalous Nernst Valve realized by Ferromagnetic Thermopile consisted of Single Ferromagnet with varying thickness 1
1.2 Anomalous Nernst Valve realized by Phase Transition of FM-NM alloy FeRh 6
2 Theory 13
2.1 Classification of Magnetism 13
2.1.1 Antiferromagnetism 14
2.1.2 Ferromagnetism 15
2.1.3 Paramagnetism 16
2.1.4 Diamagnetism 16
2.2 First-order phase transition 17
2.3 Manipulation of AFM Néel vector 18
2.4 Anomalous Nernst Effect 19
2.5 Magnetoresistance 20
2.5.1 Anisotropic Magnetoresistance (AMR) 20
2.5.2 Ordinary Magnetoresistance (OMR) 22
2.5.3 Negative MR 23
3 Method 24
3.1 Sample Preparation 24
3.1.1 Magnetron Sputtering System 24
3.1.2 Rapid Thermal Processing (RTA) 25
3.2 Characterization of Magnetic Properties 26
3.2.1 Vibrating Sample Magnetometer (VSM): 26
3.3 Characterization of Electrical Properties 27
3.3.1 Physical Property Measurement System (PPMS) 27
3.4 Characterization of Structural Properties 28
3.4.1 X-Ray Diffraction (XRD) 28
4 Experiment 30
4.1 Anomalous Nernst Valve realized by Ferromagnetic Thermopile consisted of Single Ferromagnet with varying thickness 30
4.1.1 Experimental Setup 30
4.1.2 ANE characterization of Py and Fe 31
4.1.3 Thermopile consisted of either Py-Fe or Fe-Fe 33
4.1.4 Scalable Thermopile with Signal Independent of Width 36
4.1.5 A Representation for Thermoelectric Efficiency with High Applicability and the Characterization of the Thermopile 38
4.1.6 Anomalous Nernst Valve with Four Distinguishable States 42
4.2 Anomalous Nernst Valve realized by Phase Transition of FM-NM alloy FeRh 46
4.2.1 Characterization of the basic properties of FeRh 46
4.2.1.1 Structure Characterization via X-Ray Diffraction 46
4.2.1.2 Magnetic Properties Characterization 47
4.2.1.3 Electric Transport Properties Characterization 49
4.2.1.4 Magnetic Field Induced Phase Transition 50
4.2.2 Anomalous Nernst Effect (ANE) in FeRh 51
4.2.2.1 ANE in FeRh/MgO at AFM and FM state 51
4.2.2.2 Evolution of ANE across Phase Transition under different Magnetic Field 52
4.2.2.3 Field-induced Valve-like behavior for ANE in FeRh/MgO 55
4.2.3 Manipulation of the AFM Néel Vector of FeRh/MgO 56
4.2.4 Peculiar peak-like Magnetoresistance in FeRh/MgO at AFM state 62
4.2.5 Preparation of FeRh/Glass and Its Basic Properties 68
4.2.5.1 Sample Preparation 68
4.2.5.2 Structure Characterization via X-Ray Diffraction 69
4.2.5.3 Magnetic and Electric Properties Characterization 69
4.2.5.4 AFM-AMR result for FeRh/Glass 71
4.2.5.5 Peculiar peak-like magnetoresistance in FeRh/Glass 73
4.2.5.6 Temperature dependence of coercivity for FeRh/MgO and FeRh/Glass. 74
4.2.5.7 ANE in FeRh/Glass 76
5 Conclusion 78
5.1 Anomalous Nernst Valve realized by Ferromagnetic Thermopile consisted of Single Ferromagnet with varying thickness 78
5.2 Anomalous Nernst Valve realized by Phase Transition of FM-NM alloy FeRh 79
6 Supplementary 81
7 Reference 84
dc.language.isoen
dc.subject反鐵磁zh_TW
dc.subject磁阻zh_TW
dc.subject鐵銠zh_TW
dc.subject熱電堆zh_TW
dc.subject異常能斯特閥zh_TW
dc.subject自旋電子zh_TW
dc.subject異常能斯特效應zh_TW
dc.subjectantiferromagneten
dc.subjectanomalous Nernst effecten
dc.subjectanomalous Nernst valveen
dc.subjectthermopileen
dc.subjectFeRhen
dc.subjectmagnetoresistanceen
dc.subjectspintronicsen
dc.title基於鐵磁熱電堆與鐵銠合金之異常能斯特閥zh_TW
dc.titleAnomalous Nernst Valve achieved by Ferromagnetic
Thermopile and FeRh Alloy
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱明文(Ming-Wen Chu),林昭吟(Jauyn Grace Lin),莊天明(Tien-Ming Chuang)
dc.subject.keyword自旋電子,異常能斯特效應,異常能斯特閥,熱電堆,鐵銠,磁阻,反鐵磁,zh_TW
dc.subject.keywordspintronics,anomalous Nernst effect,anomalous Nernst valve,thermopile,FeRh,magnetoresistance,antiferromagnet,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201902872
dc.rights.note有償授權
dc.date.accepted2019-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved