Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74426
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳穎練(Ying-Lien Chen)
dc.contributor.authorYu-Hsiang Yuen
dc.contributor.author游宇祥zh_TW
dc.date.accessioned2021-06-17T08:35:08Z-
dc.date.available2026-01-21
dc.date.copyright2021-03-11
dc.date.issued2021
dc.date.submitted2021-01-21
dc.identifier.citationAfroz, T., Lee, H. S., Jeon, Y. A., Sung, J. S., Rhee, J. H., Assefa, A. D., Noh, J., Hwang, A., Hur, O. S. and Ro, N. Y. 2019. Evaluation of different inoculation methods for screening of Sclerotinia rot and Phytophthora blight in perilla germplasm. J. Crop Sci. Biotechnol. 22(2):177-183. doi:10.1007/s12892-019-0115-0
Al-Fadhal, F. A., Al-Abedy, A. N. and Alkhafije, D. A. 2019. Isolation and molecular identification of Rhizoctonia solani and Fusarium solani isolated from cucumber (Cucumis sativus L.) and their control feasibility by Pseudomonas fluorescens and Bacillus subtilis. Egypt J. Biol. Pest Co. 29(1):47. doi:10.1186/s41938-019-0145-5
Ales, L. and Lenka, S. 1997. Variation in response of several wild Pisum spp. to Fusarium solani and Fusarium oxysporum. Cereal Res. Commun. 25(3):845-846. doi:10.1007/BF03543870
Alshoosh, W. G. A. 1997. Chemical composition of some roselle (Hibiscus sabdariffa) genotypes. Master Thesis. University of Khartoum.
Amusa, N., Adegbite, A. and Oladapo, M. 2005. Vascular wilt of roselle (Hibiscus sabdariffa L. var. sabdariffa) in the humid forest region of south-western Nigeria. Plant Pathology J. 4(2):122-125. doi:10.3923/ppj.2005.122.125
Amza, J. 2018. Seed borne fungi; food spoilage, negative impact and their management: A review. Food Sci. Qual. Manage. 81:70-79.
Ansari, M., Eslaminejad, T., Sarhadynejad, Z. and Eslaminejad, T. 2013. An overview of the roselle plant with particular reference to its cultivation, diseases and usages. Eur. J. Med. Plants 3(1):135-145. doi:10.9734/EJMP/2013/1889
Arnett, J. and Witcher, W. 1974. Histochemical studies of yellow poplar infected with Fusarium solani. Phytopathology 64:414-418.
Avozani, A., Reis, E. M. and Tonin, R. B. 2014. In vitro sensitivity reduction of Fusarium graminearum to DMI and QoI fungicides. Summa Phytopathol. 40(4):358-364. doi:10.1590/0100-5405/1970
Bennett, R. S. and Davis, R. M. 2013. Method for rapid production of Fusarium oxysporum f. sp. vasinfectum chlamydospores. J. Cotton Sci. 17:52-59.
Borriss, R. 2020. Phytostimulation and biocontrol by the plant-associated Bacillus amyloliquefaciens FZB42: an update. In: Kumar, M., Kumar, A., Prasad, R. (eds). Phyto-microbiome in stress regulation, Springer, Germany, pp 1-20.
Bressan, W. and Figueiredo, J. E. F. 2008. Efficacy and dose-response relationship in biocontrol of Fusarium disease in maize by Streptomyces spp. Eur. J. Plant Pathol. 120(3):311-316. doi:10.1007/s10658-007-9220-y
Cercos, A., Eilberg, B., Goyena, J., Souto, J., Vautier, E. and Widuczynski, I. 1962. Misionina: antibiotico polienico producido por Streptomyces misionensis n. sp. Rev. Investig. Agric. 16:5-27.
Chen, T. Y., Chang, C. H., Cheng, J. H. and Tseng, M. N. 2016. Application of Bacillus subtilis KHY8 bioagent to control mango anthracnose and bacterial black spot diseases. Research Bulletin of Kaohsiung District Agricultural Research and Extension Station 27(2):10-21.
Chen, Y., Zhang, A. F., Gao, T. C., Zhang, Y., Wang, W. X., Ding, K. J., Chen, L., Sun, Z., Fang, X. Z. and Zhou, M. G. 2012. Integrated use of pyraclostrobin and epoxiconazole for the control of Fusarium head blight of wheat in Anhui Province of China. Plant Dis. 96(10):1495-1500. doi:10.1094/PDIS-01-12-0099-RE
Chen, Y. F. and Chen, J. W. 2019. Effect of processing manufacture on the quility of roselle 'Taitung No. 3' products. Research Bulletin of Taitung District Agricultural Research and Extension Station 29:25-34. doi:10.6959/RBTDAIS
Chung, W. C., Wu, R. S., Hsu, C. P., Huang, H. C. and Huang, J. W. 2011. Application of antagonistic rhizobacteria for control of Fusarium seedling blight and basal rot of lily. Australas. Plant Path. 40(3):269. doi:10.1007/s13313-011-0040-3
Cole, D., Hedges, T. and Ndowora, T. 1992. A wilt of passion fruit (Passiflora edulis f. edulis Sims) caused by Fusarium solani and Phytophthora nicotianae var. parasitica. Int. J. Pest Manage. 38(4):362-366. doi:10.1080/09670879209371728
Coleman, J. J. 2016. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol. Plant Pathol. 17(2):146-158. doi: 10.1111/mpp.12289
Dasgupta, B., Mohanty, B. and Datta, P. 2012. Survival of Phytophthora parasitica causing foot and leaf rot of betelvine under different soil pH, moisture and temperature regimes. SAARC J. Agric. 10(1):29-43.
Estrada, Y. I. E., Kawasoe, S. O. and Estrada, J. A. S. E. 2001. Variabilidad patogénica de Phytophthora parasitica Dastur en jamaica (Hibiscus sabdariffa L.). Rev. Mex. Fitopatol. 19(1):84-89.
Etesami, H. and Adl, S. M. 2020. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In: Kumar, M., Kumar, A., Prasad, R. (eds). Phyto-microbiome in stress regulation. Springer, Germany, pp 147-203.
Fernando, N., Hui, S. W., Tsang, C. C., Leung, S. Y., Ngan, A. H., Leung, R. W., Groff, J. M., Lau, S. K. and Woo, P. C. 2015. Fatal Fusarium solani species complex infections in elasmobranchs: the first case report for black spotted stingray (Taeniura melanopsila) and a literature review. Mycoses 58(7):422-431. doi:10.1111/myc.12342
Freitas, M. A., Medeiros, F. H., Melo, I. S., Pereira, P. F., Peñaflor, M. F. G., Bento, J. M. and Paré, P. W. 2019. Stem inoculation with bacterial strains Bacillus amyloliquefaciens (GB03) and Microbacterium imperiale (MAIIF2a) mitigates Fusarium root rot in cassava. Phytoparasitica 47(1):135-142. doi:10.1007/s12600-018-0706-2
Gomes, V. M., Souza, R. M., Mussi‐Dias, V., Silveira, S. F. D. and Dolinski, C. 2011. Guava decline: a complex disease involving Meloidogyne mayaguensis and Fusarium solani. J. Phytopathol. 159(1):45-50. doi:10.1111/j.1439-0434.2010.01711.x
Hassan, N., Shimizu, M. and Hyakumachi, M. 2014. Occurrence of root rot and vascular wilt diseases in roselle (Hibiscus sabdariffa L.) in Upper Egypt. Mycobiology 42(1):66-72. doi:10.5941/MYCO.2014.42.1.66
Hieno, A., Li, M., Afandi, A., Otsubo, K., Suga, H. and Kageyama, K. 2019. Rapid detection of Phytophthora nicotianae by simple DNA extraction and real‐time loop‐mediated isothermal amplification assay. J. Phytopathol. 167(3):174-184. doi:10.1111/jph.12785
Hou, Y. H., Hsu, L. H., Wang, H. F., Lai, Y. H. and Chen, Y. L. 2020. Calcineurin regulates conidiation, chlamydospore formation and virulence in Fusarium oxysporum f. sp. lycopersici. Front. Microbiol. 11:2629. doi:10.3389/fmicb.2020.539702
Huang, Z. C., Wu, Y. F., Tsai, C. H., Chou, H. P., Lin, Y. H. and Chen, Y. L. 2020. Biological control of potato bacterial wilt caused by Ralstonia solanacearum with Bacillus amyloliquefaciens Ba01. J. Taiwan Agric. Res. (accepted).
Hussain, S., Lees, A., Duncan, J. and Cooke, D. 2005. Development of a species‐specific and sensitive detection assay for Phytophthora infestans and its application for monitoring of inoculum in tubers and soil. Plant Pathol. 54(3):373-382. doi:10.1111/j.1365-3059.2005.01175.x
Hwang, S., Sc, H. and Wh, K. 1975. A simplified method for sporangial production by Phytophthora cinnamomi. Mycologia 67(6):1233-1234.
Islam, A. K. M. A., Jamini, T. S., Islam, A. K. M. M. and Sabina, Y. 2016. Roselle: a functional food with high nutritional and medicinal values. Fund. Appl. Agric. 1(2):44-49.
Jangir, M., Pathak, R., Sharma, S. and Sharma, S. 2018. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol. Control 123:60-70. doi:10.1016/j.biocontrol.2018.04.018
Ji, M., Yao, K., Li, G., Wu, X., Chen, H. and Zhuang, Y. 2014. Control effects of Bacillus subtilis DJ-6 and pyraclostrobin alone and in combination against Fusarium oxysporum. Agric. Sci. Technol. 15(11):2020.
Karimi, E., Sadeghi, A., Abbaszadeh Dahaji, P., Dalvand, Y., Omidvari, M. and Kakuei Nezhad, M. 2012. Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol Sci. Techn. 22(3):333-349. doi:10.1080/09583157.2012.658552
Khan, N., Martínez-Hidalgo, P., Ice, T. A., Maymon, M., Humm, E. A., Nejat, N., Sanders, E. R., Kaplan, D. and Hirsch, A. M. 2018. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9:2363. doi:10.3389/fmicb.2018.02363
Kim, Y. S., Dixon, E. W., Vincelli, P. and Farman, M. L. 2003. Field resistance to strobilurin (QoI) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochrome b gene. Phytopathology 93(7):891-900. doi:10.1094/PHYTO.2003.93.7.891
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6):1547-1549. doi:10.1093/molbev/msy096
Li, M., Asano, T., Suga, H. and Kageyama, K. 2011. A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan. Plant Dis. 95(10):1270-1278. doi:10.1094/PDIS-01-11-0076
Liao, J. H., Chen, P. Y., Yang, Y. L., Kan, S. C., Hsieh, F. C. and Liu, Y. C. 2016. Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via in situ MALDI-TOF IMS analysis. Molecules 21(12):1670. doi:10.3390/molecules21121670
Lin, C., Tsai, C. H., Chen, P. Y., Wu, C. Y., Chang, Y. L., Yang, Y. L. and Chen, Y. L. 2018. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS ONE 13(4):e0196520. doi:10.1371/journal.pone.0196520
Lo, P. H., Kuo, C. C. and Liao, C. T. 2018. Evaluate the efficacy of yeasts on controlling postharvest disease of guava. Research Bulletin of Taichung District Agricultural Research and Extension Station 141:45-54. doi:10.6956/BTDAIS
Nicoli, A., Zambolim, L., Paula Júnior, T. J., Vieira, R. F., Teixeira, H. and Carneiro, J. E. S. 2013. Chlamydospore concentration for assessment of Fusarium root rot on common bean. Trop. Plant Pathol. 38(2):149-151. doi:10.1590/S1982-56762013000200009
O’Brien, P. A. 2017. Biological control of plant diseases. Australas. Plant Path. 46(4):293-304. doi:10.1007/s13313-017-0481-4
O’Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 95(5):2044-2049. doi:10.1073/pnas.95.5.2044
Ooi, K. and Salleh, B. 1999. Vegetative compatibility groups of Fusarium oxysporum, the causal organism of vascular wilt on roselle in Malaysia. Biotropia 12:31-41. doi:10.11598/btb.1999.0.12.149
Pastrana, A. M., Basallote-Ureba, M. J., Aguado, A., Akdi, K. and Capote, N. 2016. Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathol. Mediterr. 55:109-120. doi:10.14601 / Phytopathol Mediterr-16363
Ploetz, R., Palmateer, A., Geiser, D. and Juba, J. 2007. First report of Fusarium wilt caused by Fusarium oxysporum on roselle in the United States. Plant Dis. 91(5):639. doi:10.1094/PDIS-91-5-0639A
Punja, Z. K., Scott, C. and Chen, S. 2018. Root and crown rot pathogens causing wilt symptoms on field-grown marijuana (Cannabis sativa L.) plants. Can. J. Plant Pathol. 40(4):528-541. doi:10.1080/07060661.2018.1535470
Sandoval-Denis, M., Lombard, L. and Crous, P. W. 2019. Back to the roots: a reappraisal of Neocosmospora. Persoonia 43:90. doi:10.3767/persoonia.2019.43.04
Schoffelmeer, E. A., Klis, F. M., Sietsma, J. and Cornelissen, B. J. 1999. The cell wall of Fusarium oxysporum. Fungal Genet. Biol. 27(2-3):275-282. doi:10.1006/fgbi.1999.1153
Sharma, M. and Ghosh, R. 2016. A reliable method for Phytophthora cajani isolation, sporangia, zoospore production and in planta infection of pigeon pea. Bio protoc. 6(2):01-09. doi:10.21769/BioProtoc.1706
Singh, S., Moholkar, V. S. and Goyal, A. 2013. Isolation, identification, and characterization of a cellulolytic Bacillus amyloliquefaciens strain SS35 from rhinoceros dung. ISRN Microbiol. 2013:1-7. doi:10.1155/2013/728134
Soltanzadeh, M., Soltani Nejad, M. and Shahidi Bonjar, G. H. 2016. Application of soil‐borne actinomycetes for biological control against Fusarium wilt of chickpea (Cicer arietinum) caused by Fusarium solani fsp pisi. J. Phytopathol. 164(11-12):967-978. doi:10.1111/jph.12517
Su, J. F., Lee, Y. C., Chien, L. Y. and Hsieh, T. F. 2015. Evaluation of fungicides for growth inhibition of Phalaenopsis Fusarium pathogens. J. Taiwan Agric. Res. 64(1):32-44. doi:10.6156/JTAR/2015.06401.04
Sundaramoorthy, S., Raguchander, T., Ragupathi, N. and Samiyappan, R. 2012. Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biol. Control 60(1):59-67. doi:10.1016/j.biocontrol.2011.10.002
Torabi, A., Bonjar, G. H. S., Abdolshahi, R., Pournamdari, M., Saadoun, I. and Barka, E. A. 2019. Biological control of Paecilomyces formosus, the causal agent of dieback and canker diseases of pistachio by two strains of Streptomyces misionensis. Biol. Control 137:104029. doi:10.1016/j.biocontrol.2019.104029
Trapero Casas, A. and Jiménez Díaz, R. M. 1985. Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 75(10):1146-1151. doi:10.1094/phyto-75-1146
Tzean, S. S. 2019. List of plant diseases in Taiwan. Bureau of Animal and Plant Healthy Inspection and Quarntine, Council of Agriculture, Executive Yuan, R.O.C. Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, R.O.C. Taiwan Phytopathological Society.
Vurukonda, S. S. K. P., Giovanardi, D. and Stefani, E. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19(4):952. doi:10.3390/ijms19040952
Wang, C. J., Wang, Y. Z., Chu, Z. H., Wang, P. S., Liu, B. Y., Li, B. Y., Yu, X. L. and Luan, B. H. 2020a. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.). J. Plant Physiol. 253:153260. doi:10.1016/j.jplph.2020.153260
Wang, R., Liang, X., Long, Z., Wang, X., Yang, L., Lu, B. and Gao, J. 2020b. An LCI‐like protein APC2 protects ginseng root from Fusarium solani infection. J. Appl. Microbiol. doi:10.1111/jam.14771
Westerlund, F., Campbell, R. and Kimble, K. 1974. Fungal root rots and wilt of chickpea in California. Phytopathology 64(4):432-436.
Westphal, A., Abney, T., Xing, L. and Shaner, G. 2008. Sudden death syndrome of soybean. Plant Health Instr. doi:10.1094/PHI-I-2008-0102-01
White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J. (eds). PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315-322.
Wu, Y. K., Ou, G. T. and Yu, J. Y. 2011. First report of Nectria haematococca causing root rot disease of physic nut (Jatropha curcas) in China. Australas. Plant Dis. Notes 6(1):39-42. doi:10.1007/s13314-011-0014-x
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74426-
dc.description.abstract在台灣,近年之洛神葵田間病害調查報導,洛神葵萎凋病普遍發生,但其肇因仍未知。洛神葵萎凋病之病株莖基部呈現褐化且輕微縊縮之病徵,並可觀察到白色之氣生菌絲,縱切面維管束偶有褐化現象,多數則呈髓部腐爛之徵狀,鏡檢後亦可發現典型的鐮孢菌(Fusarium spp.)之大、小分生孢子,顯示此病害可能由鐮孢菌造成。本研究蒐集了二批來自台東縣六個不同種植地的洛神葵萎凋病樣本,經由ITS及16S rDNA之序列分析後,分離得之64株菌株包含真菌、卵菌以及細菌。利用柯霍氏法則測試這些分離到的菌株後發現,Fusarium solani K2 (FsK2)菌株會造成洛神葵植株萎凋及髓部腐爛且與田間相似之病徵。進一步利用掃描式電子顯微鏡觀察,於接種後發病之植株,FsK2之菌絲會纏據於莖基部表面,且偶可在腐爛的髓部觀察到小分生孢子與似侵入之構造。此研究為首次證明在台灣,茄鐮孢菌可造成洛神葵萎凋病的發生。此外,洛神葵種子帶菌檢測結果顯示沒有由種子攜帶F. solani的情形,此病害由種子傳播之機率較低。再者,我們發現Bacillus amyloliquefaciens Ba01、Streptomyces misionensis KHY26和殺菌劑百克敏(pyraclostrobin)可以防治洛神葵萎凋病,在盆栽試驗中分別達到76.9%、96.1%和96.1%的防治率,此方面可作為後續生物防治與化學防治之策略。zh_TW
dc.description.abstractA roselle (Hibiscus sabdariffa L.) disease survey conducted recently in Taiwan reported that roselle wilt disease occurs widely; however, the causal agent is unknown. The stems of wilted roselle were browned, slightly constricted, and showed white aerial hyphae. Rotted pith was found in the vertically dissected stem base and macroconidia and microconidia typical of the Fusarium species were observed under a microscope indicating that roselle wilt might be caused by Fusarium spp. In this study, we isolated 64 strains from wilted plants grown in six roselle fields in Taitung county, Taiwan. After ITS and 16S rDNA sequence analysis, the 64 strains were identified as different species of fungi, oomycetes or bacteria. Koch’s postulates were used to evaluate the pathogenicity of these strains, among which we found that Fusarium solani K2 (FsK2) can cause wilting and rotted pith on roselles similar to those observed in the fields. Using a scanning electron microscope, we found that mycelia of FsK2 can colonize on roots, while microconidia and penetration-like structures were sometimes found in the rot pith. This is the first demonstration that F. solani can cause roselle wilt in Taiwan. On the other hand, roselle seeds were tested and no seeds were contaminated by F. solani, indicating that the disease may not be seed-borne. Furthermore, we found that Bacillus amyloliquefaciens Ba01, Streptomyces misionensis KHY26, and fungicide pyraclostrobin can control roselle wilt with a 76.9%, 96.1%, and 96.1% control rate, respectively, and therefore might serve as potential biological and chemical control strategies against roselle wilt disease in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:35:08Z (GMT). No. of bitstreams: 1
U0001-2101202110303200.pdf: 5633674 bytes, checksum: 5f847bfa64392c10e661c2434c251aec (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 x
1. Introduction 1
2. Materials and methods 6
2.1 Strains, media, and growth conditions 6
2.2 Sample collection and pathogen isolation 6
2.3 Pathogen identification and phylogenetic analysis 7
2.4 Inoculum preparation 8
2.5 Koch’s postulate and disease severity 9
2.6 Chlamydospore induction 11
2.7 Scanning electron microscopy 12
2.8 Roselle seed-borne microbial test 12
2.9 Screening of biocontrol strains for combating roselle wilt fungus 13
2.10 Screening of fungicides for combating roselle wilt fungus 14
2.11 Pot assays 15
3. Results 17
3.1 Isolation of possible roselle wilt pathogens 17
3.2 F. solani can cause the roselle wilt 17
3.3 Phylogenetic analysis and morphology of FsK2 18
3.4 Observation of roselle wilt samples with scanning electron microscope 19
3.5 F. solani is not likely transmitted by roselle seeds 20
3.6 Biocontrol agents B. amyloliquefaciens Ba01 and S. misionensis KHY26 can inhibit the growth of FsK2 21
3.7 Pyraclostrobin possessed inhibitory effects against FsK2 21
3.8 B. amyloliquefaciens Ba01 and S. misionensis KHY26 can reduce the disease severity of roselle wilt 22
3.9 Pyraclostrobin can control the roselle wilt 23
4. Discussion 24
5. Tables 29
6. Figures 35
7. Supplementary information 51
Table 51
Figures 57
8. References 62
9. Appendix 71
表目錄
Table 1. Strains isolated from diseased roselle samples in Taitung, Taiwan 29
Table 2. Biocontrol strains used in this study 31
Table 3. Primers used in this study 32
Table 4. Fungicides used in this study 33
Table 5. Disease incidence and disease severity index of roselle wilt at 49 days post inoculation 34
Table S1. Strains isolated from roselle seeds 51
圖目錄
Figure 1. Roselle wilt disease in the fields and symptoms found in Taitung, Taiwan. 35
Figure 2. Koch’s postulate test of F. solani K2 and mixed inoculation test with P. nicotianae CWR-42 at 49 days post inoculation. 36
Figure 3. Phylogenetic analysis of F. solani K2. 38
Figure 4. Morphology of the causal agent of roselle wilt, FsK2. 40
Figure 5. Observation of roselle wilt samples with scanning electron microscope. 42
Figure 6. F. solani is not likely transmitted by roselle seeds. 44
Figure 7. B. amyloliquefaciens Ba01 and S. misionensis KHY26 showed marked anti-FsK2 effect. 45
Figure 8. In vitro screening of fungicides against FsK2. 47
Figure 9. Biological and chemical control of the roselle wilt. 49
Figure S1. Disease severity index of roselle wilt disease. 57
Figure S2. F. oxysporum caused leaf yellowing symptom on roselles. 58
Figure S3. P. nicotianae can cause leaf yellowing and root rot of roselle seedlings at 25℃ with high humidity. 59
Figure S4. F. solani K1 (FsK1) can also cause roselle wilt. 60
Figure S5. B. amyloliquefaciens Ba01 can enhance the elongation of roselle roots. 61
dc.language.isoen
dc.subject液化澱粉芽孢桿菌zh_TW
dc.subject茄鐮孢菌zh_TW
dc.subject生物防治zh_TW
dc.subject洛神葵萎凋病zh_TW
dc.subject化學防治zh_TW
dc.subject百克敏zh_TW
dc.subject米修鏈黴菌zh_TW
dc.subjectchemical controlen
dc.subjectFusarium solanien
dc.subjectBacillus amyloliquefaciensen
dc.subjectStreptomyces misionensisen
dc.subjectpyraclostrobinen
dc.subjectbiological controlen
dc.subjectroselle wilt diseaseen
dc.title洛神葵萎凋病之鑑定與防治策略開發zh_TW
dc.titleIdentification of roselle wilt disease and development of control strategiesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.advisor-orcid陳穎練(0000-0002-1966-470X)
dc.contributor.oralexamcommittee鍾嘉綾(Chia-Lin Chung),林乃君(Nai-Chun Lin),陳啟予(Chi-Yu Chen),曾敏南(Min-Nan Tseng)
dc.contributor.oralexamcommittee-orcid鍾嘉綾(0000-0002-1612-0109),林乃君(0000-0002-6485-9776)
dc.subject.keyword洛神葵萎凋病,茄鐮孢菌,液化澱粉芽孢桿菌,米修鏈黴菌,百克敏,生物防治,化學防治,zh_TW
dc.subject.keywordroselle wilt disease,Fusarium solani,Bacillus amyloliquefaciens,Streptomyces misionensis,pyraclostrobin,biological control,chemical control,en
dc.relation.page106
dc.identifier.doi10.6342/NTU202100109
dc.rights.note有償授權
dc.date.accepted2021-01-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-2101202110303200.pdf
  未授權公開取用
5.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved